Download Free Geometry Of Complex Numbers Book in PDF and EPUB Free Download. You can read online Geometry Of Complex Numbers and write the review.

Illuminating, widely praised book on analytic geometry of circles, the Moebius transformation, and 2-dimensional non-Euclidean geometries.
Complex Numbers in Geometry focuses on the principles, interrelations, and applications of geometry and algebra. The book first offers information on the types and geometrical interpretation of complex numbers. Topics include interpretation of ordinary complex numbers in the Lobachevskii plane; double numbers as oriented lines of the Lobachevskii plane; dual numbers as oriented lines of a plane; most general complex numbers; and double, hypercomplex, and dual numbers. The text then takes a look at circular transformations and circular geometry, including ordinary circular transformations, axial circular transformations of the Lobachevskii plane, circular transformations of the Lobachevskii plane, axial circular transformations, and ordinary circular transformations. The manuscript is intended for pupils in high schools and students in the mathematics departments of universities and teachers' colleges. The publication is also useful in the work of mathematical societies and teachers of mathematics in junior high and high schools.
The purpose of this book is to demonstrate that complex numbers and geometry can be blended together beautifully. This results in easy proofs and natural generalizations of many theorems in plane geometry, such as the Napoleon theorem, the Ptolemy-Euler theorem, the Simson theorem, and the Morley theorem. The book is self-contained—no background in complex numbers is assumed—and can be covered at a leisurely pace in a one-semester course. Many of the chapters can be read independently. Over 100 exercises are included. The book would be suitable as a text for a geometry course, or for a problem solving seminar, or as enrichment for the student who wants to know more.
This is a relatively fast paced graduate level introduction to complex algebraic geometry, from the basics to the frontier of the subject. It covers sheaf theory, cohomology, some Hodge theory, as well as some of the more algebraic aspects of algebraic geometry. The author frequently refers the reader if the treatment of a certain topic is readily available elsewhere but goes into considerable detail on topics for which his treatment puts a twist or a more transparent viewpoint. His cases of exploration and are chosen very carefully and deliberately. The textbook achieves its purpose of taking new students of complex algebraic geometry through this a deep yet broad introduction to a vast subject, eventually bringing them to the forefront of the topic via a non-intimidating style.
* Learn how complex numbers may be used to solve algebraic equations, as well as their geometric interpretation * Theoretical aspects are augmented with rich exercises and problems at various levels of difficulty * A special feature is a selection of outstanding Olympiad problems solved by employing the methods presented * May serve as an engaging supplemental text for an introductory undergrad course on complex numbers or number theory
Geared toward readers unfamiliar with complex numbers, this text explains how to solve problems that frequently arise in the applied sciences and emphasizes constructions related to algebraic operations. 1956 edition.
Provides the reader with a deep appreciation of complex analysis and how this subject fits into mathematics. The first four chapters provide an introduction to complex analysis with many elementary and unusual applications. Chapters 5 to 7 develop the Cauchy theory and include some striking applications to calculus. Chapter 8 glimpses several appealing topics, simultaneously unifying the book and opening the door to further study.
This radical first course on complex analysis brings a beautiful and powerful subject to life by consistently using geometry (not calculation) as the means of explanation. Aimed at undergraduate students in mathematics, physics, and engineering, the book's intuitive explanations, lack of advanced prerequisites, and consciously user-friendly prose style will help students to master the subject more readily than was previously possible. The key to this is the book's use of new geometric arguments in place of the standard calculational ones. These geometric arguments are communicated with the aid of hundreds of diagrams of a standard seldom encountered in mathematical works. A new approach to a classical topic, this work will be of interest to students in mathematics, physics, and engineering, as well as to professionals in these fields.
Easily accessible Includes recent developments Assumes very little knowledge of differentiable manifolds and functional analysis Particular emphasis on topics related to mirror symmetry (SUSY, Kaehler-Einstein metrics, Tian-Todorov lemma)
A beautiful and relatively elementary account of a part of mathematics where three main fields - algebra, analysis and geometry - meet. The book provides a broad view of these subjects at the level of calculus, without being a calculus book. Its roots are in arithmetic and geometry, the two opposite poles of mathematics, and the source of historic conceptual conflict. The resolution of this conflict, and its role in the development of mathematics, is one of the main stories in the book. Stillwell has chosen an array of exciting and worthwhile topics and elegantly combines mathematical history with mathematics. He covers the main ideas of Euclid, but with 2000 years of extra insights attached. Presupposing only high school algebra, it can be read by any well prepared student entering university. Moreover, this book will be popular with graduate students and researchers in mathematics due to its attractive and unusual treatment of fundamental topics. A set of well-written exercises at the end of each section allows new ideas to be instantly tested and reinforced.