Download Free Geometry In Ancient And Medieval India Book in PDF and EPUB Free Download. You can read online Geometry In Ancient And Medieval India and write the review.

This book is a geometrical survey of the Sanskrit and Prakrt scientific and quasi-scientific literature of India, beginning with the Vedic literature and ending with the early part of the 17th century. It deals in detail with the Sulbasutras in the Vedic literature, with the mathematical parts of Jaina Canonical works and of the Hindu Siddhantas and with the contributions to geometry made by the astronomer mathematicians Aryabhata I & II, Sripati, Bhaskara I & II, Sangamagrama Madhava, Paramesvara, Nilakantha, his disciples and a host of others. The works of the mathematicians Mahavira, Sridhara and Narayana Pandita and the Bakshali Manuscript have also been studied. The work seeks to explode the theory that the Indian mathematical genius was predominantly algebraic and computational and that it eschewed proofs and rationales. There was a school in India which delighted to demonstrate even algebraical results geometrically. In their search for a sufficiently good approximation for the value of pie Indian mathematicians had discovered the tool of integration. Which they used equally effectively for finding the surface area and volume of a sphere and in other fields. This discovery of integration was the sequel of the inextricable blending of geometry and series mathematics.
This book is the first complete study of the origin of geometry in India. In Ancient India, brick-built fire-altars (citi-s) were ordained for the Soma sacrifice, a Vedic rite, which led to the compilation of rule-books for making and arranging bricks. These volumes, called ÅsulbasÅ«tra-s, represent the first available texts of both geometry and mensuration, and were composed from 600 BCE, although the actual practice goes back to c. 1500 BCE. This book begins by detailing the history of geometry in Egypt, Mesopotamia, and Greece, and shows that geometry everywhere starts with brick-built structures, rather than the measurement of land. It emphasizes that geometry in India, unlike in Greece, was side-based rather than angle-based. The text is profusely illustrated.
The present volume provides a fascinating overview of geometrical ideas and perceptions from the earliest cultures to the mathematical and artistic concepts of the 20th century. It is the English translation of the 3rd edition of the well-received German book “5000 Jahre Geometrie,” in which geometry is presented as a chain of developments in cultural history and their interaction with architecture, the visual arts, philosophy, science and engineering. Geometry originated in the ancient cultures along the Indus and Nile Rivers and in Mesopotamia, experiencing its first “Golden Age” in Ancient Greece. Inspired by the Greek mathematics, a new germ of geometry blossomed in the Islamic civilizations. Through the Oriental influence on Spain, this knowledge later spread to Western Europe. Here, as part of the medieval Quadrivium, the understanding of geometry was deepened, leading to a revival during the Renaissance. Together with parallel achievements in India, China, Japan and the ancient American cultures, the European approaches formed the ideas and branches of geometry we know in the modern age: coordinate methods, analytical geometry, descriptive and projective geometry in the 17th an 18th centuries, axiom systems, geometry as a theory with multiple structures and geometry in computer sciences in the 19th and 20th centuries. Each chapter of the book starts with a table of key historical and cultural dates and ends with a summary of essential contents of geometr y in the respective era. Compelling examples invite the reader to further explore the problems of geometry in ancient and modern times. The book will appeal to mathematicians interested in Geometry and to all readers with an interest in cultural history. From letters to the authors for the German language edition I hope it gets a translation, as there is no comparable work. Prof. J. Grattan-Guinness (Middlesex University London) "Five Thousand Years of Geometry" - I think it is the most handsome book I have ever seen from Springer and the inclusion of so many color plates really improves its appearance dramatically! Prof. J.W. Dauben (City University of New York) An excellent book in every respect. The authors have successfully combined the history of geometry with the general development of culture and history. ... The graphic design is also excellent. Prof. Z. Nádenik (Czech Technical University in Prague)
This volume consists of a collection of articles based on lectures given by scholars from India, Europe and USA at the sessions on 'History of Indian Mathematics' at the AMS-India mathematics conference in Bangalore during December 2003. These articles cover a wide spectrum of themes in Indian mathematics. They begin with the mathematics of the ancient period dealing with Vedic Prosody and Buddhist Logic, move on to the work of Brahmagupta, of Bhaskara, and that of the mathematicians of the Kerala school of the classical and medieval period, and end with the work of Ramanaujan, and Indian contributions to Quantum Statistics during the modern era. The volume should be of value to those interested in the history of mathematics.
In recent decades it has become obvious that mathematics has always been a worldwide activity. But this is the first book to provide a substantial collection of English translations of key mathematical texts from the five most important ancient and medieval non-Western mathematical cultures, and to put them into full historical and mathematical context. The Mathematics of Egypt, Mesopotamia, China, India, and Islam gives English readers a firsthand understanding and appreciation of these cultures' important contributions to world mathematics. The five section authors--Annette Imhausen (Egypt), Eleanor Robson (Mesopotamia), Joseph Dauben (China), Kim Plofker (India), and J. Lennart Berggren (Islam)--are experts in their fields. Each author has selected key texts and in many cases provided new translations. The authors have also written substantial section introductions that give an overview of each mathematical culture and explanatory notes that put each selection into context. This authoritative commentary allows readers to understand the sometimes unfamiliar mathematics of these civilizations and the purpose and significance of each text. Addressing a critical gap in the mathematics literature in English, this book is an essential resource for anyone with at least an undergraduate degree in mathematics who wants to learn about non-Western mathematical developments and how they helped shape and enrich world mathematics. The book is also an indispensable guide for mathematics teachers who want to use non-Western mathematical ideas in the classroom.
The Purpose Of This Book Is To Draw The Attention Of Students And Teachers Of Mathematics To The Historical Continuity Of Indian Mathematics, Starting From The Sulba Sutras Of The Vedas Up To The 17Th Century. The Book Includes Proofs, Not Presented So Far, Of The Propositions Stated In The Well-Known Treatise Vedic Mathematics By Sri Bharati Krishna Teertha. It Also Introduces To The Modern Reader The Work Of Aryabhata, Brahmagupta, Bhaskara And Madhava.
Medieval Europe was a meeting place for the Christian, Jewish, and Islamic civilizations, and the fertile intellectual exchange of these cultures can be seen in the mathematical developments of the time. This sourcebook presents original Latin, Hebrew, and Arabic sources of medieval mathematics, and shows their cross-cultural influences. Most of the Hebrew and Arabic sources appear here in translation for the first time. Readers will discover key mathematical revelations, foundational texts, and sophisticated writings by Latin, Hebrew, and Arabic-speaking mathematicians, including Abner of Burgos's elegant arguments proving results on the conchoid—a curve previously unknown in medieval Europe; Levi ben Gershon’s use of mathematical induction in combinatorial proofs; Al-Mu’taman Ibn Hūd’s extensive survey of mathematics, which included proofs of Heron’s Theorem and Ceva’s Theorem; and Muhyī al-Dīn al-Maghribī’s interesting proof of Euclid’s parallel postulate. The book includes a general introduction, section introductions, footnotes, and references. The Sourcebook in the Mathematics of Medieval Europe and North Africa will be indispensable to anyone seeking out the important historical sources of premodern mathematics.
Based on extensive research in Sanskrit sources, Mathematics in India chronicles the development of mathematical techniques and texts in South Asia from antiquity to the early modern period. Kim Plofker reexamines the few facts about Indian mathematics that have become common knowledge--such as the Indian origin of Arabic numerals--and she sets them in a larger textual and cultural framework. The book details aspects of the subject that have been largely passed over in the past, including the relationships between Indian mathematics and astronomy, and their cross-fertilizations with Islamic scientific traditions. Plofker shows that Indian mathematics appears not as a disconnected set of discoveries, but as a lively, diverse, yet strongly unified discipline, intimately linked to other Indian forms of learning. Far more than in other areas of the history of mathematics, the literature on Indian mathematics reveals huge discrepancies between what researchers generally agree on and what general readers pick up from popular ideas. This book explains with candor the chief controversies causing these discrepancies--both the flaws in many popular claims, and the uncertainties underlying many scholarly conclusions. Supplementing the main narrative are biographical resources for dozens of Indian mathematicians; a guide to key features of Sanskrit for the non-Indologist; and illustrations of manuscripts, inscriptions, and artifacts. Mathematics in India provides a rich and complex understanding of the Indian mathematical tradition. **Author's note: The concept of "computational positivism" in Indian mathematical science, mentioned on p. 120, is due to Prof. Roddam Narasimha and is explored in more detail in some of his works, including "The Indian half of Needham's question: some thoughts on axioms, models, algorithms, and computational positivism" (Interdisciplinary Science Reviews 28, 2003, 1-13).
This book includes 58 selected articles that highlight the major contributions of Professor Radha Charan Gupta—a doyen of history of mathematics—written on a variety of important topics pertaining to mathematics and astronomy in India. It is divided into ten parts. Part I presents three articles offering an overview of Professor Gupta’s oeuvre. The four articles in Part II convey the importance of studies in the history of mathematics. Parts III–VII constituting 33 articles, feature a number of articles on a variety of topics, such as geometry, trigonometry, algebra, combinatorics and spherical trigonometry, which not only reveal the breadth and depth of Professor Gupta’s work, but also highlight his deep commitment to the promotion of studies in the history of mathematics. The ten articles of part VIII, present interesting bibliographical sketches of a few veteran historians of mathematics and astronomy in India. Part IX examines the dissemination of mathematical knowledge across different civilisations. The last part presents an up-to-date bibliography of Gupta’s work. It also includes a tribute to him in Sanskrit composed in eight verses.
two main (interacting) ways. They constitute that with which exploration into problems or questions is carried out. But they also constitute that which is exchanged between scholars or, in other terms, that which is shaped by one (or by some) for use by others. In these various dimensions, texts obviously depend on the means and technologies available for producing, reproducing, using and organizing writings. In this regard, the contribution of a history of text is essential in helping us approach the various historical contexts from which our sources originate. However, there is more to it. While shaping texts as texts, the practitioners of the sciences may create new textual resources that intimately relate to the research carried on. One may think, for instance, of the process of introduction of formulas in mathematical texts. This aspect opens up a wholerangeofextremelyinterestingquestionstowhichwewillreturnatalaterpoint.But practitioners of the sciences also rely on texts produced by themselves or others, which they bring into play in various ways. More generally, they make use of textual resources of every kind that is available to them, reshaping them, restricting, or enlarging them. Among these, one can think of ways of naming, syntax of statements or grammatical analysis, literary techniques, modes of shaping texts or parts of text, genres of text and so on.Inthissense,thepractitionersdependon,anddrawon,the“textualcultures”available to the social and professional groups to which they belong.