Download Free Geometry Civilized Book in PDF and EPUB Free Download. You can read online Geometry Civilized and write the review.

This lavishly illustrated book provides an unusually accessible approach to geometry by placing it in historical context. With concise discussions and carefully chosen illustrations the author brings the material to life by showing what problems motivated early geometers throughout the world. Geometry Civilized covers classical plane geometry, emphasizing the methods of Euclid but also drawing on advances made in China and India. It includes a wide range of problems, solutions, and illustrations, as well as a chapter on trigonometry, and prepares its readers for the study of solid geometry and conic sections.
Contains a history of the subject of geometry, including more than 3,000 entries providing definitions and explanations of related topics, plus brief biographies of over 300 scientists.
This new book for mathematics and mathematics education majors helps students gain an appreciation of geometry and its importance in the history and development of mathematics. The material is presented in three parts. The first is devoted to a rigorous introduction of Euclidean geometry, the second covers various noneuclidean geometries, and the last part delves into symmetry and polyhedra. Historical contexts accompany each topic. Exercises and activities are interwoven with the text to enable the students to explore geometry. Some of the activities take advantage of geometric software so students - in particular, future teachers - gain a better understanding of its capabilities. Others explore the construction of simple models or use manipulatives allowing students to experience the hands-on, creative side of mathematics. While this text contains a rigorous mathematical presentation, key design features and activities allow it to be used successfully in mathematics for teachers courses as well.
This is a book on Euclidean geometry that covers the standard material in a completely new way, while also introducing a number of new topics that would be suitable as a junior-senior level undergraduate textbook. The author does not begin in the traditional manner with abstract geometric axioms. Instead, he assumes the real numbers, and begins his treatment by introducing such modern concepts as a metric space, vector space notation, and groups, and thus lays a rigorous basis for geometry while at the same time giving the student tools that will be useful in other courses.
Harold Jacobs’s Geometry created a revolution in the approach to teaching this subject, one that gave rise to many ideas now seen in the NCTM Standards. Since its publication nearly one million students have used this legendary text. Suitable for either classroom use or self-paced study, it uses innovative discussions, cartoons, anecdotes, examples, and exercises that unfailingly capture and hold student interest. This edition is the Jacobs for a new generation. It has all the features that have kept the text in class by itself for nearly 3 decades, all in a thoroughly revised, full-color presentation that shows today’s students how fun geometry can be. The text remains proof-based although the presentation is in the less formal paragraph format. The approach focuses on guided discovery to help students develop geometric intuition.
This book provides a multitude of geometric constructions usually encountered in civil engineering and surveying practice. A detailed geometric solution is provided to each construction as well as a step-by-step set of programming instructions for incorporation into a computing system. The volume is comprised of 12 chapters and appendices that may be grouped in three major parts: the first is intended for those who love geometry for its own sake and its evolution through the ages, in general, and, more specifically, with the introduction of the computer. The second section addresses geometric features used in the book and provides support procedures used by the constructions presented. The remaining chapters and the appendices contain the various constructions. The volume is ideal for engineering practitioners in civil and construction engineering and allied areas.
An exploration of one of the most celebrated and well-known theorems in mathematics By any measure, the Pythagorean theorem is the most famous statement in all of mathematics. In this book, Eli Maor reveals the full story of this ubiquitous geometric theorem. Although attributed to Pythagoras, the theorem was known to the Babylonians more than a thousand years earlier. Pythagoras may have been the first to prove it, but his proof—if indeed he had one—is lost to us. The theorem itself, however, is central to almost every branch of science, pure or applied. Maor brings to life many of the characters that played a role in its history, providing a fascinating backdrop to perhaps our oldest enduring mathematical legacy.
Britain in the long nineteenth century developed an increasing interest in science of all kinds. Whilst poets and novelists took inspiration from technical and scientific innovations, those directly engaged in these new disciplines relied on literary techniques to communicate their discoveries to a wider audience. The essays in this collection uncover this symbiotic relationship between literature and science, at the same time bridging the disciplinary gulf between the history of science and literary studies. Specific case studies include the engineering language used by Isambard Kingdom Brunel, the role of physiology in the development of the sensation novel and how mass communication made people lonely.
Belief in the heavenly nature of geometrical forms has existed since prehistoric times, but only now, in these pages, can we see and understand how this belief inspired the design of a great religious building. Without mathematical complexities, but in simple language and with many clarifying illustrations, the author demonstrates the geometrical constructions that the great architects of Canterbury Cathedral devised to bring the geometry of their building into harmony with that of the Universe, and with the geometries of their predecessors. The secret but simple means that they must have used to transfer plans to scale from parchment to building site is also brought to light, as is the geometry and remarkable history of the Cathedral’s superb “marble pavement:.
The fundamental idea of geometry is that of symmetry. With that principle as the starting point, Barker and Howe begin an insightful and rewarding study of Euclidean geometry. The primary focus of the book is on transformations of the plane. The transformational point of view provides both a path for deeper understanding of traditional synthetic geometry and tools for providing proofs that spring from a consistent point of view. As a result, proofs become more comprehensible, as techniques can be used and reused in similar settings. The approach to the material is very concrete, with complete explanations of all the important ideas, including foundational background. The discussions of the nine-point circle and wallpaper groups are particular examples of how the strength of the transformational point of view and the care of the authors' exposition combine to give a remarkable presentation of topics in geometry. This text is for a one-semester undergraduate course on geometry. It is richly illustrated and contains hundreds of exercises.