Download Free Geometries Codes And Cryptography Book in PDF and EPUB Free Download. You can read online Geometries Codes And Cryptography and write the review.

This textbook equips graduate students and advanced undergraduates with the necessary theoretical tools for applying algebraic geometry to information theory, and it covers primary applications in coding theory and cryptography. Harald Niederreiter and Chaoping Xing provide the first detailed discussion of the interplay between nonsingular projective curves and algebraic function fields over finite fields. This interplay is fundamental to research in the field today, yet until now no other textbook has featured complete proofs of it. Niederreiter and Xing cover classical applications like algebraic-geometry codes and elliptic-curve cryptosystems as well as material not treated by other books, including function-field codes, digital nets, code-based public-key cryptosystems, and frameproof codes. Combining a systematic development of theory with a broad selection of real-world applications, this is the most comprehensive yet accessible introduction to the field available. Introduces graduate students and advanced undergraduates to the foundations of algebraic geometry for applications to information theory Provides the first detailed discussion of the interplay between projective curves and algebraic function fields over finite fields Includes applications to coding theory and cryptography Covers the latest advances in algebraic-geometry codes Features applications to cryptography not treated in other books
The general problem studied by information theory is the reliable transmission of information through unreliable channels. Channels can be unreliable either because they are disturbed by noise or because unauthorized receivers intercept the information transmitted. In the first case, the theory of error-control codes provides techniques for correcting at least part of the errors caused by noise. In the second case cryptography offers the most suitable methods for coping with the many problems linked with secrecy and authentication. Now, both error-control and cryptography schemes can be studied, to a large extent, by suitable geometric models, belonging to the important field of finite geometries. This book provides an update survey of the state of the art of finite geometries and their applications to channel coding against noise and deliberate tampering. The book is divided into two sections, "Geometries and Codes" and "Geometries and Cryptography". The first part covers such topics as Galois geometries, Steiner systems, Circle geometry and applications to algebraic coding theory. The second part deals with unconditional secrecy and authentication, geometric threshold schemes and applications of finite geometry to cryptography. This volume recommends itself to engineers dealing with communication problems, to mathematicians and to research workers in the fields of algebraic coding theory, cryptography and information theory.
Covering topics in algebraic geometry, coding theory, and cryptography, this volume presents interdisciplinary group research completed for the February 2016 conference at the Institute for Pure and Applied Mathematics (IPAM) in cooperation with the Association for Women in Mathematics (AWM). The conference gathered research communities across disciplines to share ideas and problems in their fields and formed small research groups made up of graduate students, postdoctoral researchers, junior faculty, and group leaders who designed and led the projects. Peer reviewed and revised, each of this volume's five papers achieves the conference’s goal of using algebraic geometry to address a problem in either coding theory or cryptography. Proposed variants of the McEliece cryptosystem based on different constructions of codes, constructions of locally recoverable codes from algebraic curves and surfaces, and algebraic approaches to the multicast network coding problem are only some of the topics covered in this volume. Researchers and graduate-level students interested in the interactions between algebraic geometry and both coding theory and cryptography will find this volume valuable.
The theory of algebraic function fields over finite fields has its origins in number theory. However, after Goppa`s discovery of algebraic geometry codes around 1980, many applications of function fields were found in different areas of mathematics and information theory. This book presents survey articles on some of these new developments. The topics focus on material which has not yet been presented in other books or survey articles.
The inaugural research program of the Institute for Mathematical Sciences at the National University of Singapore took place from July to December 2001 and was devoted to coding theory and cryptology. As part of the program, tutorials for graduate students and junior researchers were given by world-renowned scholars. These tutorials covered fundamental aspects of coding theory and cryptology and were designed to prepare for original research in these areas. The present volume collects the expanded lecture notes of these tutorials. The topics range from mathematical areas such as computational number theory, exponential sums and algebraic function fields through coding-theory subjects such as extremal problems, quantum error-correcting codes and algebraic-geometry codes to cryptologic subjects such as stream ciphers, public-key infrastructures, key management, authentication schemes and distributed system security.
Algebraic & geometry methods have constituted a basic background and tool for people working on classic block coding theory and cryptography. Nowadays, new paradigms on coding theory and cryptography have arisen such as: Network coding, S-Boxes, APN Functions, Steganography and decoding by linear programming. Again understanding the underlying procedure and symmetry of these topics needs a whole bunch of non trivial knowledge of algebra and geometry that will be used to both, evaluate those methods and search for new codes and cryptographic applications. This book shows those methods in a self-contained form.
This volume contains the proceedings of the 13th $\mathrm{AGC^2T}$ conference, held March 14-18, 2011, in Marseille, France, together with the proceedings of the 2011 Geocrypt conference, held June 19-24, 2011, in Bastia, France. The original research articles contained in this volume cover various topics ranging from algebraic number theory to Diophantine geometry, curves and abelian varieties over finite fields and applications to codes, boolean functions or cryptography. The international conference $\mathrm{AGC^2T}$, which is held every two years in Marseille, France, has been a major event in the area of applied arithmetic geometry for more than 25 years.
This book links two subjects: algebraic geometry and coding theory. It uses a novel approach based on the theory of algebraic function fields. Coverage includes the Riemann-Rock theorem, zeta functions and Hasse-Weil's theorem as well as Goppa' s algebraic-geometric codes and other traditional codes. It will be useful to researchers in algebraic geometry and coding theory and computer scientists and engineers in information transmission.
Graduate-level introduction to error-correcting codes, which are used to protect digital data and applied in public key cryptosystems.
This volume contains the proceedings of the 15th International Conference on Arithmetic, Geometry, Cryptography, and Coding Theory (AGCT), held at the Centre International de Rencontres Mathématiques in Marseille, France, from May 18–22, 2015. Since the first meeting almost 30 years ago, the biennial AGCT meetings have been one of the main events bringing together researchers interested in explicit aspects of arithmetic geometry and applications to coding theory and cryptography. This volume contains original research articles reflecting recent developments in the field.