Download Free Geomechanics And Elastic Anisotropy Of The Bakken Formation Williston Basin Book in PDF and EPUB Free Download. You can read online Geomechanics And Elastic Anisotropy Of The Bakken Formation Williston Basin and write the review.

Applied Petroleum Geomechanics provides a bridge between theory and practice as a daily use reference that contains direct industry applications. Going beyond the basic fundamentals of rock properties, this guide covers critical field and lab tests, along with interpretations from actual drilling operations and worldwide case studies, including abnormal formation pressures from many major petroleum basins. Rounding out with borehole stability solutions and the geomechanics surrounding hydraulic fracturing and unconventional reservoirs, this comprehensive resource gives petroleum engineers a much-needed guide on how to tackle today's advanced oil and gas operations. - Presents methods in formation evaluation and the most recent advancements in the area, including tools, techniques and success stories - Bridges the gap between theory of rock mechanics and practical oil and gas applications - Helps readers understand pore pressure calculations and predictions that are critical to shale and hydraulic activity
This contributed volume presents a multi-perspective collection of the latest research findings on oil and gas exploration and imparts insight that can greatly assist in understanding field behavior, design of test programs, and design of field operations. With this book, engineers also gain a powerful guide to the most commonly used numerical simulation methods that aid in reservoir modelling. In addition, the contributors explore development of technologies that allow for cost effective oil and gas exploration while minimizing the impact on our water resources, surface and groundwater aquifers, geological stability of impacted areas, air quality, and infrastructure assets such as roads, pipelines, water, and wastewater networks. Easy to understand, the book identifies equipment and procedural problems inherent to oil and gas operations and provides systematic approaches for solving them.
Due to the influence of pore-throat size distribution, pore connectivity, and microscale fractures, the transport, distribution, and residual saturation of fluids in porous media are difficult to characterize. Petrophysical methods in natural porous media have attracted great attention in a variety of fields, especially in the oil and gas industry. A wide range of research studies have been conducted on the characterization of porous media covers and multiphase flow therein. Reliable approaches for characterizing microstructure and multiphase flow in porous media are crucial in many fields, including the characterization of residual water or oil in hydrocarbon reservoirs and the long-term storage of supercritical CO2 in geological formations. This book gathers together 15 recent works to emphasize fundamental innovations in the field and novel applications of petrophysics in unconventional reservoirs, including experimental studies, numerical modeling (fractal approach), and multiphase flow modeling/simulations. The relevant stakeholders of this book are authorities and service companies working in the petroleum, subsurface water resources, air and water pollution, environmental, and biomaterial sectors.
A comprehensive overview of the key geologic, geomechanical and engineering principles that govern the development of unconventional oil and gas reservoirs. Covering hydrocarbon-bearing formations, horizontal drilling, reservoir seismology and environmental impacts, this is an invaluable resource for geologists, geophysicists and reservoir engineers.
Seismic Reflection Processing coherently presents the physical concepts, mathematical details and methodology for optimizing results of reservoir modelling, under conditions of isotropy and anisotropy. The most common form of anisotropy - transverse isotropy - is dealt with in detail. Besides, practical aspects in reservoir engineering - such as interval isotropic or anisotropic properties of layered media; identifying lithology, pore-fluid types and saturation; and determining crack/fracture-orientations and density - form the core of discussions. This book incorporates significant new developments in isotropic and anisotropic reflection processing, while organizing them to improve the interpretation of seismic reflection data and optimizing the modeling of hydrocarbon reservoirs. It is written primarily as a reference and tutorial for graduate/postgraduate students and research workers in geophysics.
As the shale revolution continues in North America, unconventional resource markets are emerging on every continent. In the next eight to ten years, more than 100,000 wells and one- to two-million hydraulic fracturing stages could be executed, resulting in close to one trillion dollars in industry spending. This growth has prompted professionals ex
Exploration and characterization of conventional and unconventional reservoirs using seismic technologies are among the main activities of upstream technology groups and business units of oil and gas operators. However, these activities frequently encounter difficulties in quantitative seismic interpretation due to remaining confusion and new challenges in the fast developing field of seismic petrophysics. Seismic Petrophysics in Quantitative Interpretation shows how seismic interpretation can be made simple and robust by integration of the rock physics principles with seismic and petrophysical attributes bearing on the properties of both conventional (thickness, net/gross, lithology, porosity, permeability, and saturation) and unconventional (thickness, lithology, organic richness, thermal maturity) reservoirs. Practical solutions to existing interpretation problems in rock physics-based amplitude versus offset (AVO) analysis and inversion are addressed in the book to streamline the workflows in subsurface characterization. Although the book is aimed at oil and gas industry professionals and academics concerned with utilization of seismic data in petroleum exploration and production, it could also prove helpful for geotechnical and completion engineers and drillers seeking to better understand how seismic and sonic data can be more thoroughly utilized.
Engineers and geologists in the petroleum industry will find Petroleum Related Rock Mechanics, 2e, a powerful resource in providing a basis of rock mechanical knowledge - a knowledge which can greatly assist in the understanding of field behavior, design of test programs and the design of field operations. Not only does this text give an introduction to applications of rock mechanics within the petroleum industry, it has a strong focus on basics, drilling, production and reservoir engineering. Assessment of rock mechanical parameters is covered in depth, as is acoustic wave propagation in rocks, with possible link to 4D seismics as well as log interpretation. - Learn the basic principles behind rock mechanics from leading academic and industry experts - Quick reference and guide for engineers and geologists working in the field - Keep informed and up to date on all the latest methods and fundamental concepts
This interdisciplinary book encompasses the fields of rock mechanics, structural geology and petroleum engineering to address a wide range of geomechanical problems that arise during the exploitation of oil and gas reservoirs. It considers key practical issues such as prediction of pore pressure, estimation of hydrocarbon column heights and fault seal potential, determination of optimally stable well trajectories, casing set points and mud weights, changes in reservoir performance during depletion, and production-induced faulting and subsidence. The book establishes the basic principles involved before introducing practical measurement and experimental techniques to improve recovery and reduce exploitation costs. It illustrates their successful application through case studies taken from oil and gas fields around the world. This book is a practical reference for geoscientists and engineers in the petroleum and geothermal industries, and for research scientists interested in stress measurements and their application to problems of faulting and fluid flow in the crust.
A significantly expanded new edition of this practical guide to rock physics and geophysical interpretation for reservoir geophysicists and engineers.