Download Free Geomechanical Aspects Of Operation Of Underground Gas Storage Book in PDF and EPUB Free Download. You can read online Geomechanical Aspects Of Operation Of Underground Gas Storage and write the review.

This book is devoted to the most important and urgent problems arising during the operation of underground gas storage facilities (UGS) and associated with the destruction of the reservoir and sand production into the wells. UGS facilities play a special role in ensuring high reliability of stable and guaranteed gas supplies to consumers. However, despite many years of experience in UGS well operation, there is still no sufficiently substantiated geomechanical model of reservoir failure and a mathematical description of the processes occurring in the reservoir-well system, taking into account the peculiarities of the mechanical behavior of reservoir rocks during cyclic injection and extraction of gas. As a result, there are no reliable criteria for establishing a rational regime for the operation of an UGS wells in conditions of a possible destruction of reservoir rocks. Further development of underground gas storage direction requires the introduction of innovative technologies that can be used both in the design of new UGS facilities and to extend the safe and efficient operation of existing underground gas storage facilities. To solve these problems, the most promising technologies, taking into account their efficiency, relatively low cost and environmental safety, are those based on the geomechanical approach. The book is addressed to specialists in the development and operation of underground gas storage facilities, as well as specialists in geomechanics of oil and gas fields. It can be useful for students and graduate students studying in the speciality "Development of oil and gas fields".
This book is devoted to the most important and urgent problems arising during the operation of underground gas storage facilities (UGS) and associated with the destruction of the reservoir and sand production into the wells. UGS facilities play a special role in ensuring high reliability of stable and guaranteed gas supplies to consumers. However, despite many years of experience in UGS well operation, there is still no sufficiently substantiated geomechanical model of reservoir failure and a mathematical description of the processes occurring in the reservoir-well system, taking into account the peculiarities of the mechanical behavior of reservoir rocks during cyclic injection and extraction of gas. As a result, there are no reliable criteria for establishing a rational regime for the operation of an UGS wells in conditions of a possible destruction of reservoir rocks. Further development of underground gas storage direction requires the introduction of innovative technologies that can be used both in the design of new UGS facilities and to extend the safe and efficient operation of existing underground gas storage facilities. To solve these problems, the most promising technologies, taking into account their efficiency, relatively low cost and environmental safety, are those based on the geomechanical approach. The book is addressed to specialists in the development and operation of underground gas storage facilities, as well as specialists in geomechanics of oil and gas fields. It can be useful for students and graduate students studying in the speciality "Development of oil and gas fields".
This interdisciplinary book encompasses the fields of rock mechanics, structural geology and petroleum engineering to address a wide range of geomechanical problems that arise during the exploitation of oil and gas reservoirs. It considers key practical issues such as prediction of pore pressure, estimation of hydrocarbon column heights and fault seal potential, determination of optimally stable well trajectories, casing set points and mud weights, changes in reservoir performance during depletion, and production-induced faulting and subsidence. The book establishes the basic principles involved before introducing practical measurement and experimental techniques to improve recovery and reduce exploitation costs. It illustrates their successful application through case studies taken from oil and gas fields around the world. This book is a practical reference for geoscientists and engineers in the petroleum and geothermal industries, and for research scientists interested in stress measurements and their application to problems of faulting and fluid flow in the crust.
The UK became a net importer of natural gas in 2004 and by 2020 will import up to 90% of its requirements, leaving it vulnerable to increasing energy bills and risk of disruption to supply. New pipelines to Europe and improvements to interconnectors will meet some demand, but Government recognises the need for increased gas storage capacity: best met by the construction of underground storage facilities. Energy security has also raised the likelihood of a new generation of coal-fired power-stations, which to be environmentally viable, will require clean-coal technologies with near-zero greenhouse gas emissions. A key element of this strategy will be underground CO2 storage. This volume reviews the technologies and issues involved in the underground storage of natural gas and CO2, with examples from the UK and overseas. The potential for underground storage of other gases such as hydrogen, or compressed air linked to renewable sources is also reviewed.
This book contains the proceedings of NATO Advanced Study Institute, 'Underground Storage of Natural Gas - Theory and Practice', which was held at The Middle East Technical University, Ankara, Turkey during 2-10 May 1988. Underground storage is the process which effectively balances a variable demand market with a desirably constant supply provided by pipelines. Storage reservoirs are the unique warehouses designed and developed to provide a ready supply of natural gas in response to high, peak demands during cold weather. The natural' gas is injected into the underground storage environment when the market demand falls below the supply available from the pipeline. It is withdrawn from the storage reservoir to supplement the steady supply provided by the pipelines whenever the demand exceeds the supply. The overall wellbeing of the entire western world in general and of the NATO member count ries in particular depend critically upon having sufficient energy resources. Of over 80 quad Btus of energy consumed each year in the western world, about 30~ comes from natural gas, a figure only exceeded by oil. The technology related to supply and demand of natural gas has been in the focus of long range energy planning during the last decade in Western Europe. In view of recent developments related to natural gas in Europe and Turkey, an "Advanced Study Institute" programme in Turkey on underground storage of natural gas was deemed particularly relevant and timely.
The history of the European oil and gas industry reflects local as well as global political events, economic constraints and the personal endeavours of individual petroleum geoscientists as much as it does the development of technologies and the underlying geology of the region. The first commercial oil wells in Europe were drilled in Poland in 1853, Romania in 1857, Germany in 1859 and Italy in 1860. The 23 papers in this volume focus on the history and heritage of the oil and gas industry in the key European oil-producing countries from the earliest onshore drilling to its development into the modern industry that we know today. The contributors chronicle the main events and some of the major players that shaped the industry in Europe. The volume also marks several important anniversaries, including 150 years of oil exploration in Poland and Romania, the centenary of the drilling of the first oil well in the UK and 50 years of oil production from onshore Spain.
Geological Carbon Storage Subsurface Seals and Caprock Integrity Seals and caprocks are an essential component of subsurface hydrogeological systems, guiding the movement and entrapment of hydrocarbon and other fluids. Geological Carbon Storage: Subsurface Seals and Caprock Integrity offers a survey of the wealth of recent scientific work on caprock integrity with a focus on the geological controls of permanent and safe carbon dioxide storage, and the commercial deployment of geological carbon storage. Volume highlights include: Low-permeability rock characterization from the pore scale to the core scale Flow and transport properties of low-permeability rocks Fundamentals of fracture generation, self-healing, and permeability Coupled geochemical, transport and geomechanical processes in caprock Analysis of caprock behavior from natural analogues Geochemical and geophysical monitoring techniques of caprock failure and integrity Potential environmental impacts of carbon dioxide migration on groundwater resources Carbon dioxide leakage mitigation and remediation techniques Geological Carbon Storage: Subsurface Seals and Caprock Integrity is an invaluable resource for geoscientists from academic and research institutions with interests in energy and environment-related problems, as well as professionals in the field.
Harmonising Rock Mechanics and the Environment comprises the proceedings (invited and contributed papers) of the 12th ISRM International Congress on Rock Mechanics (Beijing, China, 18-21 October 2011). The contributions cover the entire scope of rock mechanics and rock engineering, with an emphasis on the critical role of both disciplines in sustai
This book introduces the scientific basis and engineering practice for CO2 storage, covering topics such as storage capacity, trapping mechanisms, CO2 phase behaviour and flow dynamics, engineering and geomechanics of geological storage, injection well design, and geophysical and geochemical monitoring. It also provides numerous examples from the early mover CCS projects, notably Sleipner and Snøhvit offshore Norway, as well as other pioneering CO2 storage projects.
This exclusive compilation written by eminent experts from more than ten countries, outlines the processes and methods for geologic sequestration in different sinks. It discusses and highlights the details of individual storage types, including recent advances in the science and technology of carbon storage. The topic is of immense interest to geoscientists, reservoir engineers, environmentalists and researchers from the scientific and industrial communities working on the methodologies for carbon dioxide storage. Increasing concentrations of anthropogenic carbon dioxide in the atmosphere are often held responsible for the rising temperature of the globe. Geologic sequestration prevents atmospheric release of the waste greenhouse gases by storing them underground for geologically significant periods of time. The book addresses the need for an understanding of carbon reservoir characteristics and behavior. Other book volumes on carbon capture, utilization and storage (CCUS) attempt to cover the entire process of CCUS, but the topic of geologic sequestration is not discussed in detail. This book focuses on the recent trends and up-to-date information on different storage rock types, ranging from deep saline aquifers to coal to basaltic formations.