Download Free Geology And Geomorphology Of Alluvial And Fluvial Fans Book in PDF and EPUB Free Download. You can read online Geology And Geomorphology Of Alluvial And Fluvial Fans and write the review.

Alluvial and fluvial fans are the most widespread depositional landform bordering the margins of highland regions and actively subsiding continental basins, across a broad spectrum of tectonic and climatic settings. They are significant to the local morphodynamics of mountain regions and also to the evolution of sediment-routing systems, affecting the propagation and preservation of stratigraphic signals of environmental change over vast areas. The volume presents case studies discussing the geology and geomorphology of alluvial and fluvial fans from both active systems and ancient ones preserved in the stratigraphic record. It brings together case studies from a range of continents, climatic and tectonic settings, some introducing innovative monitoring and analysis techniques, and it provides an overview of current debates in the field. This volume will be of particular interest to geologists, geomorphologists, sedimentologists and the general reader with an interest in Earth science.
Alluvial fans are important sedimentary environments. They trap sediment delivered from mountain source areas, and exert an important control on the delivery of sediment to downstream environments, to axial drainages and to sedimentary basins. They preserve a sensitive record of environmental change within the mountain source areas. Alluvial fan geomorphology and sedimentology reflect not only drainage basin size and geology, but change in response to tectonic, climatic and base-level controls. One of the challenges facing alluvial fan research is to resolve how these gross controls are reflected in alluvial fan dynamics and to apply the results of studies of modern fan processes and Quaternary fans to the understanding of sedimentary sequences in the rock record. This volume includes papers based on up-to-date research, and focuses on three themes: alluvial fan processes, dynamics of Quaternary alluvial fans and fan sedimentary sequences. Linking the papers is an emphasis on the controls of fan geomorphology, sedimentology and dynamics. This provides a basis for integration between geomorphological and sedimentological approaches, and an understanding how fluvial systems respond to tectonic, climatic and base-level changes.
Over the last twenty years there has been a major expansion of knowledge in the field of landforms and landforming processes of deserts. This advanced-level book provides a benchmark for the current state of science, and is written by an international team of authors who are acknowledged experts in their fields.
Alluvial fans are gently sloping, fan-shaped landforms common at the base of mountain ranges in arid and semiarid regions such as the American West. Floods on alluvial fans, although characterized by relatively shallow depths, strike with little if any warning, can travel at extremely high velocities, and can carry a tremendous amount of sediment and debris. Such flooding presents unique problems to federal and state planners in terms of quantifying flood hazards, predicting the magnitude at which those hazards can be expected at a particular location, and devising reliable mitigation strategies. Alluvial Fan Flooding attempts to improve our capability to determine whether areas are subject to alluvial fan flooding and provides a practical perspective on how to make such a determination. The book presents criteria for determining whether an area is subject to flooding and provides examples of applying the definition and criteria to real situations in Arizona, California, New Mexico, Utah, and elsewhere. The volume also contains recommendations for the Federal Emergency Management Agency, which is primarily responsible for floodplain mapping, and for state and local decisionmakers involved in flood hazard reduction.
This extensively revised, restructured, and updated edition continues to present an engaging and comprehensive introduction to the subject, exploring the world’s landforms from a broad systems perspective. It covers the basics of Earth surface forms and processes, while reflecting on the latest developments in the field. Fundamentals of Geomorphology begins with a consideration of the nature of geomorphology, process and form, history, and geomorphic systems, and moves on to discuss: structure: structural landforms associated with plate tectonics and those associated with volcanoes, impact craters, and folds, faults, and joints process and form: landforms resulting from, or influenced by, the exogenic agencies of weathering, running water, flowing ice and meltwater, ground ice and frost, the wind, and the sea; landforms developed on limestone; and landscape evolution, a discussion of ancient landforms, including palaeosurfaces, stagnant landscape features, and evolutionary aspects of landscape change. This third edition has been fully updated to include a clearer initial explanation of the nature of geomorphology, of land surface process and form, and of land-surface change over different timescales. The text has been restructured to incorporate information on geomorphic materials and processes at more suitable points in the book. Finally, historical geomorphology has been integrated throughout the text to reflect the importance of history in all aspects of geomorphology. Fundamentals of Geomorphology provides a stimulating and innovative perspective on the key topics and debates within the field of geomorphology. Written in an accessible and lively manner, it includes guides to further reading, chapter summaries, and an extensive glossary of key terms. The book is also illustrated throughout with over 200 informative diagrams and attractive photographs, all in colour.
Originally published in 1977, this is a classic of the geomorphology literature. Erosion, transport, and deposition of sediment within river catchments concern a wide range of earth scientists and profoundly affect land management. Upland soil removal engages the attention of soil conservationists, hydraulic engineers deal with fluvial sediment transport and river channel morphology, and patterns of sediment deposition in riverine and coastal lowlands affect navigability, the habitability of valley floors and the distribution of groundwater and minerals. The author argues persuasively that fluvial geomorphology, sedimentology and stratigraphy provide insights into each of these components of the river basin. "This volume, with its generous illustrations will be welcomed by earth scientists generally. It fills an important niche in the fluvial literature and its lucid style and clear exposition place it well within the range of students in any form of higher education." Nature "As a synthesis of the fluvial system and its effects on the landscape, as a primer in fluvial geomorphology and sedimentation for the planner, engineer and economic geologist, and as a stimulator of geomorphic thought, this book is most valuable." American Scientist Dr. Schumm is an internationally recognized geomorphologist who has published 150 papers and authored and edited 11 books. His primary experience has been in the investigation and analysis of fluvial systems. He has applied the concepts of geomorphology, fluvial hydraulics and geology to analyze alluvial river form and shape, sediment transport and effects of man-induced changes on river systems throughout the United States and in numerous foreign countries. He has also been involved in the interpretation of lunar and Martian landforms. Dr. Schumm is a past Chairman of the Geopmorphology Division of the Geological Society of America, has served on technical and committees of the National Research Council, the Geological Society of America, the American Geophysical Union, International Geographic Union, the National Science Foundation and NASA. He has performed research, lectured and advised government agencies around the world.
Tectonic geomorphology is the study of the interplay between tectonic and surface processes that shape the landscape in regions of active deformation and at time scales ranging from days to millions of years. Over the past decade, recent advances in the quantification of both rates and the physical basis of tectonic and surface processes have underpinned an explosion of new research in the field of tectonic geomorphology. Modern tectonic geomorphology is an exceptionally integrative field that utilizes techniques and data derived from studies of geomorphology, seismology, geochronology, structure, geodesy, stratigraphy, meteorology and Quaternary science. While integrating new insights and highlighting controversies from the ten years of research since the 1st edition, this 2nd edition of Tectonic Geomorphology reviews the fundamentals of the subject, including the nature of faulting and folding, the creation and use of geomorphic markers for tracing deformation, chronological techniques that are used to date events and quantify rates, geodetic techniques for defining recent deformation, and paleoseismologic approaches to calibrate past deformation. Overall, this book focuses on the current understanding of the dynamic interplay between surface processes and active tectonics. As it ranges from the timescales of individual earthquakes to the growth and decay of mountain belts, this book provides a timely synthesis of modern research for upper-level undergraduate and graduate earth science students and for practicing geologists. Additional resources for this book can be found at: www.wiley.com/go/burbank/geomorphology.
This thoroughly revised and expanded edition of the much acclaimed Encyclopedia of Coastal Science edited by M. Schwarz (Springer 2005), presents an interdisciplinary approach that includes biology, ecology, engineering, geology, geomorphology, oceanography, remote sensing, technological advances, and anthropogenic impacts on coasts. Within its covers the Encyclopedia of Coastal Science, 2nd ed. brings together and coordinates many aspects of coastal and related sciences that are widely dispersed in the scientific literature. The broadly interdisciplinary subject matter of this volume features contributions by over 280 well-known international specialists in their respective fields and provides an abundance of figures in full-color with line drawings and photographs, and other illustrations such as satellite images. Not only does this volume offer a large number of new and revised entries, it also includes an illustrated glossary of coastal geomorphology, extensive bibliographic citations, and cross-references. It provides a comprehensive reference work for students, scientific and technical professionals as well as administrators, managers, and informed lay readers. Reviews from the first edition: Awarded for Excellence in Scholarly and Professional Publishing: “Honorable Mention”, in the category Single Volume/Science from the Association of American Publishers (AAP) 2005. "The contents and approach are interdisciplinary and, under a single cover, one finds subjects normally scattered throughout scientific literature." "The topics cover a broad spectrum, so does the geographic range of the contributors. ... besides geomorphologists, biologists, ecologists, engineers, geographers, geologists, oceanographers and technologists will find information related to their respective fields ... . Inclusion of appendices ... is very useful. The illustrated glossary of geomorphology will prove very useful for many of us ... ." Roger H. Charlier, Journal of Coastal Research, Volume 21, Issue 4, Page 866, July 2005. "It is an excellent work that should be included in any carefully selected list of best science reference books of the year "Summing Up: Highly recommended. " M.L. Larsgaard, Choice, Volume 43, Issue 6, Page 989, February 2006. "This volume is a comprehensive collection of articles covering all aspects of the subject: social and economic, engineering, coastal processes, habitats, erosion, geological features, research and observation." ... "As with similar works reviewed, I chose to read articles on familiar topics to see if they covered the expected, and some on unfamiliar topics to see if they could be readily understood. The book passed both tests, but the style is denser and more fact-filled than most of the encyclopedias I have reviewed." John Goodier, Reference Reviews, Volume 20, Issue 2, pages 35-36, 2006
Filling a niche in the geomorphology teaching market, this introductory book is built around a 12 week course in fluvial geomorphology. ‘Reading the landscape’ entails making sense of what a riverscape looks like, how it works, how it has evolved over time, and how alterations to one part of a catchment may have secondary consequences elsewhere, over different timeframes. These place-based field analyses are framed within their topographic, climatic and environmental context. Issues and principles presented in the first part of this book provide foundational understandings that underpin the approach to reading the landscape that is presented in the second half of the book. In reading the landscape, detective-style investigations and interpretations are tied to theoretical and conceptual principles to generate catchment-specific analyses of river character, behaviour and evolution, including responses to human disturbance. This book has been constructed as an introductory text on river landscapes, providing a bridge and/or companion to quantitatively-framed or modelled approaches to landscape analysis that are addressed elsewhere. Key principles outlined in the book emphasise the importance of complexity, contingency and emergence in interpreting the character, behaviour and evolution of any given system. The target audience is second and third year undergraduate students in geomorphology, hydrology, earth science and environmental science, as well as river practitioners who use geomorphic understandings to guide scientific and/or management applications. The primary focus of Kirstie and Gary’s research and teaching entails the use of geomorphic principles as a tool with which to develop coherent scientific understandings of river systems, and the application of these understandings in management practice. Kirstie and Gary are co-developers of the River Styles® Framework and Short Course that is widely used in river management, decision-making and training. Additional resources for this book can be found at: www.wiley.com/go/fryirs/riversystems.