Download Free Geological Core Analysis Book in PDF and EPUB Free Download. You can read online Geological Core Analysis and write the review.

This book offers a compact guide to geological core analysis, covering both theoretical and practical aspects of geological studies of reservoir cores. It equips the reader with the knowledge needed to precisely and accurately analyse cores. The book begins by providing a description of a coring plan, coring, and core sampling and continues with a sample preparation for geological analysis. It then goes on to explain how the samples are named, classified and integrated in order to understand the geological properties that dictate reservoir characteristics. Subsequently, porosity and permeability data derived from routine experiments are combined to define geological rock types and reduce reservoir heterogeneity. Sequence stratigraphy is introduced for reservoir zonation. Core log preparation is also covered, allowing reservoirs to be analysed even more accurately. As the study of core samples is the only way to accurately gauge reservoir properties, this book provides a useful guide for all geologists and engineers working with subsurface samples.
In this volume, recent advances in analytical and logging technology and their application to the analysis of sediment cores are presented. Developments in providing access to core data and associated datasets, and advances in data mining technology in order to integrate and interpret new and legacy datasets within the wider context of seafloor studies are also discussed.
Core Analysis: A Best Practice Guide is a practical guide to the design of core analysis programs. Written to address the need for an updated set of recommended practices covering special core analysis and geomechanics tests, the book also provides unique insights into data quality control diagnosis and data utilization in reservoir models. The book's best practices and procedures benefit petrophysicists, geoscientists, reservoir engineers, and production engineers, who will find useful information on core data in reservoir static and dynamic models. It provides a solid understanding of the core analysis procedures and methods used by commercial laboratories, the details of lab data reporting required to create quality control tests, and the diagnostic plots and protocols that can be used to identify suspect or erroneous data. - Provides a practical overview of core analysis, from coring at the well site to laboratory data acquisition and interpretation - Defines current best practice in core analysis preparation and test procedures, and the diagnostic tools used to quality control core data - Provides essential information on design of core analysis programs and to judge the quality and reliability of core analysis data ultimately used in reservoir evaluation - Of specific interest to those working in core analysis, porosity, relative permeability, and geomechanics
Geologists, engineers, and petrophysicists concerned with hydrocarbon production from naturally fractured reservoirs will find this book a valuable tool for obtaining pertinent rock data to evaluate reserves and optimize well location and performance. Nelson emphasizes geological, petrophysical, and rock mechanics to complement other studies of the subject that use well logging and classical engineering approaches. This well organized, updated edition contains a wealth of field and laboratory data, case histories, and practical advice. - A great how-to-guide for anyone working with fractured or highly anisotropic reservoirs - Provides real-life illustrations through case histories and field and laboratory data
The purpose of the series is to compile and pass on the accumulated knowledge of regional geology that is being lost as generalists with field experience are replaced by specialists with computers. It is designed to appeal to both academic and petroleum geologists. In this third and final part of Volume One, geologists discuss extensional basins including rifts, passive margins, and inverted extensional basins. The chapters have a broadly similar layout, and where appropriate include a section on the petroleum system. They cover non-volcanic and transform passive margins, cratonic basins on pre-Cambrian and Paleozoic basements, and world maps. Annotation ©2012 Book News, Inc., Portland, OR (booknews.com).
The need for this book has arisen from demand for a current text from our students in Petroleum Engineering at Imperial College and from post-experience Short Course students. It is, however, hoped that the material will also be of more general use to practising petroleum engineers and those wishing for aa introduction into the specialist literature. The book is arranged to provide both background and overview into many facets of petroleum engineering, particularly as practised in the offshore environments of North West Europe. The material is largely based on the authors' experience as teachers and consultants and is supplemented by worked problems where they are believed to enhance understanding. The authors would like to express their sincere thanks and appreciation to all the people who have helped in the preparation of this book by technical comment and discussion and by giving permission to reproduce material. In particular we would like to thank our present colleagues and students at Imperial College and at ERC Energy Resource Consultants Ltd. for their stimulating company, Jill and Janel for typing seemingly endless manuscripts; Dan Smith at Graham and Trotman Ltd. for his perseverence and optimism; and Lesley and Joan for believing that one day things would return to normality. John S. Archer and Colin G. Wall 1986 ix Foreword Petroleum engineering has developed as an area of study only over the present century. It now provides the technical basis for the exploitation of petroleum fluids in subsurface sedimentary rock reservoirs.
This book is a practical guide to downhole rock sampling and coring concepts, methods, systems, and procedures for practitioners and researchers. Its chapters are based upon years of extensive studies and research about the coring methods and via direct and continuous communication and consultation obtained from various service and operator companies such as Baker Hughes GE, NOV, OMV, and Sandvik. The contributors discuss the state-of-the-art coring methods and systems (mainly used in the petroleum industry), which include: · conventional coring; · wireline continuous coring; · invasion mitigation coring (low invasion, gel coring, sponge coring); · jam-detection, anti-jamming, full closure; · safe-coring and tripping; · oriented-coring; · pressure/in-situ coring; · logging-while-coring; · motor coring; · mini-coring; · coiled Tubing Coring; and · underbalanced coring. The contributors provide practical and applicable understanding of the procedures of these coring methods and systems, as well as the specific core barrel components, working mechanisms, and schematics of the tools and processes used. Because Coring Methods and Systems analyses and compares the core barrels used in both petroleum and mining industries, it enhances the communication and may allow knowledge transfer between the two industries. As core damage is a serious issue during coring and handling jeopardizing correct calibration of exploration data, Coring Methods and Systems has greatly focused on its identification and its mitigation. Therefore, it can be used as an ideal source for geologists, core analysts, and reservoir engineers, to ensure the retrieval of high-quality cores.
Originally published in 2005, this book covers the closely related techniques of electron microprobe analysis (EMPA) and scanning electron microscopy (SEM) specifically from a geological viewpoint. Topics discussed include: principles of electron-target interactions, electron beam instrumentation, X-ray spectrometry, general principles of SEM image formation, production of X-ray 'maps' showing elemental distributions, procedures for qualitative and quantitative X-ray analysis (both energy-dispersive and wavelength-dispersive), the use of both 'true' electron microprobes and SEMs fitted with X-ray spectrometers, and practical matters such as sample preparation and treatment of results. Throughout, there is an emphasis on geological aspects not mentioned in similar books aimed at a more general readership. The book avoids unnecessary technical detail in order to be easily accessible, and forms a comprehensive text on EMPA and SEM for geological postgraduate and postdoctoral researchers, as well as those working in industrial laboratories.