Download Free Geochemical Kinetics Of Mineral Water Reactions In The Field And The Laboratory Book in PDF and EPUB Free Download. You can read online Geochemical Kinetics Of Mineral Water Reactions In The Field And The Laboratory and write the review.

Geochemical kinetics as a topic is now of importance to a wide range of geochemists in academia, industry, and government, and all geochemists need a rudimentary knowledge of the field. This book summarizes the fundamentals of geochemical kinetics with examples drawn especially from mineral dissolution and precipitation. It also encompasses discussion of high temperature processes and global geochemical cycle modeling. Analysis of textures of rocks, sediments, and mineral surfaces are incorporated throughout and provide a sub-theme of the book.
Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 95. Publication of this monograph will coincide, to a precision of a few per mil, with the centenary of Henri Becquerel's discovery of "radiations actives" (C. R. Acad. Sci., Feb. 24, 1896). In 1896 the Earth was only 40 million years old according to Lord Kelvin. Eleven years later, Boltwood had pushed the Earth's age past 2000 million years, based on the first U/Pb chemical dating results. In exciting progression came discovery of isotopes by J. J. Thomson in 1912, invention of the mass spectrometer by Dempster (1918) and Aston (1919), the first measurement of the isotopic composition of Pb (Aston, 1927) and the final approach, using Pb-Pb isotopic dating, to the correct age of the Earth: close-2.9 Ga (Gerling, 1942), closer-3.0 Ga (Holmes, 1949) and closest-4.50 Ga (Patterson, Tilton and Inghram, 1953).
The book is structured thematically, encompassing principles, processes and products, practice and applications. Discussion of processes that control heavy mineral assemblages throughout the rock cycle are presented by leading experts, whose key-note works are followed by specialist case studies. Each work also provides details on the geology of the study area, techniques and data treatment. The high number of contributions represent the collective experience and wisdom of generations of geologists, and provide an invaluable source of references to works carried out in many parts of the world.* Presents a unique and authoritative resource of immediate relevance and practical use to the researcher and applied geologist * Contains case studies demonstrating the broad range of applications of heavy minerals in a variety of modern and ancient geological settings, and in resource exploration * Includes examples of geological problems from employing heavy mineral analysis and establishing criteria that can be applied before deciding to undertake a study
Volume 23 of Reviews in Mineralogy and accompanying MSA short course covers chemical reactions that take place at mineral-water interfaces. We believe that this book describes most of the important concepts and contributions that have driven mineral-water interface geochemistry to its present state. We begin in Chapter 1 with examples of the global importance of mineral-water interface reactions and a brief review of the contents of the entire book. Thereafter, we have divided the book into four sections, including atomistic approaches (Chapters 2- 3), adsorption (Chapters 4-8), precipitation and dissolution (Chapters 9-11), and oxidation-reduction reactions (Chapters 11-14).
The changing focus and approach of geomorphic research suggests that the time is opportune for a summary of the state of discipline. The number of peer-reviewed papers published in geomorphic journals has grown steadily for more than two decades and, more importantly, the diversity of authors with respect to geographic location and disciplinary background (geography, geology, ecology, civil engineering, computer science, geographic information science, and others) has expanded dramatically. As more good minds are drawn to geomorphology, and the breadth of the peer-reviewed literature grows, an effective summary of contemporary geomorphic knowledge becomes increasingly difficult. The fourteen volumes of this Treatise on Geomorphology will provide an important reference for users from undergraduate students looking for term paper topics, to graduate students starting a literature review for their thesis work, and professionals seeking a concise summary of a particular topic. Information on the historical development of diverse topics within geomorphology provides context for ongoing research; discussion of research strategies, equipment, and field methods, laboratory experiments, and numerical simulations reflect the multiple approaches to understanding Earth’s surfaces; and summaries of outstanding research questions highlight future challenges and suggest productive new avenues for research. Our future ability to adapt to geomorphic changes in the critical zone very much hinges upon how well landform scientists comprehend the dynamics of Earth’s diverse surfaces. This Treatise on Geomorphology provides a useful synthesis of the state of the discipline, as well as highlighting productive research directions, that Educators and students/researchers will find useful. Geomorphology has advanced greatly in the last 10 years to become a very interdisciplinary field. Undergraduate students looking for term paper topics, to graduate students starting a literature review for their thesis work, and professionals seeking a concise summary of a particular topic will find the answers they need in this broad reference work which has been designed and written to accommodate their diverse backgrounds and levels of understanding Editor-in-Chief, Prof. J. F. Shroder of the University of Nebraska at Omaha, is past president of the QG&G section of the Geological Society of America and present Trustee of the GSA Foundation, while being well respected in the geomorphology research community and having won numerous awards in the field. A host of noted international geomorphologists have contributed state-of-the-art chapters to the work. Readers can be guaranteed that every chapter in this extensive work has been critically reviewed for consistency and accuracy by the World expert Volume Editors and by the Editor-in-Chief himself No other reference work exists in the area of Geomorphology that offers the breadth and depth of information contained in this 14-volume masterpiece. From the foundations and history of geomorphology through to geomorphological innovations and computer modelling, and the past and future states of landform science, no "stone" has been left unturned!
Volume 70 of Reviews in Mineralogy and Geochemistry represents an extensive review of the material presented by the invited speakers at a short course on Thermodynamics and Kinetics of Water-Rock Interaction held prior to the 19th annual V. M. Goldschmidt Conference in Davos, Switzerland (June 19-21, 2009). Contents: Thermodynamic Databases for Water-Rock Interaction Thermodynamics of Solid Solution-Aqueous Solution Systems Mineral Replacement Reactions Thermodynamic Concepts in Modeling Sorption at the Mineral-Water Interface Surface Complexation Modeling: Mineral Fluid Equilbria at the Molecular Scale The Link Between Mineral Dissolution/Precipitation Kinetics and Solution Chemistry Organics in Water-Rock Interactions Mineral Precipitation Kinetics Towards an Integrated Model of Weathering, Climate, and Biospheric Processes Approaches to Modeling Weathered Regolith Fluid-Rock Interaction: A Reactive Transport Approach Geochemical Modeling of Reaction Paths and Geochemical Reaction Networks
A to Z of Earth Scientists, Updated Edition is a comprehensive A to Z reference of Earth scientists in areas including plate tectonics, climate change, and planetary science. Designed for high school through early college students, this is an ideal reference of notable Earth scientists from the 19th century to the present. Featuring nearly 200 entries and 100 black-and-white photographs, this title uses the device of biography in order to put a human face on science—a method that adds immediacy to the prose for the high school student who may have an interest in pursuing a career in the earth sciences. People covered include: James Hutton (1726–1797) William Smith (1769–1839) Charles Lyell (1797–1875) Mary Anning (1799–1847) Inge Lehmann (1888–1993) Walter Alvarez (1911–1988) Doris Malkin Curtis (1914–1991) Marie Tharp (1920–2006) David Keeling (1928–2005) Dawn Wright (1961–present)