Download Free Genomic Perl Book in PDF and EPUB Free Download. You can read online Genomic Perl and write the review.

This introduction to computational molecular biology will help programmers and biologists learn the skills needed to start work in this important, expanding field. The author explains many of the basic computational problems and gives concise, working programs to solve them in the Perl programming language. With minimal prerequisites, the author explains the biological background for each problem, develops a model for the solution, then introduces the Perl concepts needed to implement the solution. The book covers pairwise and multiple sequence alignment, fast database searches for homologous sequences, protein motif identification, genome rearrangement, physical mapping, phylogeny reconstruction, satellite identification, sequence assembly, gene finding, and RNA secondary structure. The concrete examples and step-by-step approach make it easy to grasp the computational and statistical methods, including dynamic programming, branch-and-bound optimization, greedy methods, maximum likelihood methods, substitution matrices, BLAST searching, and Karlin-Altschul statistics. Perl code is provided on the accompanying CD.
Publisher description
This book provides a detailed and up-to-dated information on the genomes belonging to three major life forms on Earth – archaea, prokaryotes and eukaryotes. Each section describes about the genome of a specific group of organisms, such as viruses, archaea, bacteria, eukaryotes and organellar genomes. Individual chapters provide details of their organization, structure, evolution, sequencing strategies and functions. Further, this book discusses the technologies that are applied for genome sequencing; assembly, annotation and gene prediction. Other topics include the genomes of important model organisms, mitochondria genome of Neanderthal fossil, etc. This book also examines the evolution of chloroplast and mitochondria genomes by comparing with bacteria, addresses the diseases that occur in humans due to the mutations in mitochondrial genome, gene therapy and engineering of chloroplast and mitochondrial genomes. Lastly, it features an overview of the role of proteomics, exposomics, connectomics, metabolomics, and microbiomics. This book is a fascinating read for students, lecturers and researchers in the field of genetics, genomics, microbiology and life sciences.
The recent explosive growth of biological data has lead to a rapid increase in the number of molecular biology databases. Held in many different locations and often using varying interfaces and non-standard data formats, integrating and comparing data from these multiple databases can be difficult and time-consuming. This book provides an overview of the key tools currently available for large-scale comparisons of gene sequences and annotations, focusing on the databases and tools from the University of California, Santa Cruz (UCSC), Ensembl, and the National Centre for Biotechnology Information (NCBI). Written specifically for biology and bioinformatics students and researchers, it aims to give an appreciation of the methods by which the browsers and their databases are constructed, enabling readers to determine which tool is the most appropriate for their requirements. Each chapter contains a summary and exercises to aid understanding and promote effective use of these important tools.
This book contains complete information on Capsicum genetic resources, diversity, evolution, history and advances in capsicum improvement from classical breeding to whole genome sequencing, genomics, databases and its impact on next generation pepper breeding. Capsicum is one of the most important Solanaceae crops grown worldwide as vegetables and spices. Due to its high economic value and to meet the demands of enormous population growth amid biotic and abiotic stresses, there has been an ongoing breeding program utilizing available genetic resources with desired traits to increase the sustainable productivity of this crop for several decades. However, the precision breeding of this crop for desired traits only started with the advent of molecular markers. The recent advances in high-throughput genome sequencing technologies helped in the quick decoding of transcriptome, epigenome, nuclear and organeller genomes, thereby enhancing our understanding of the structure and function of the Capsicum genome, and helping in genomics assisted breeding. These advanced technologies coupled with conventional mapping have greatly contributed towards dissection and manipulation of economically important traits more precisely and made less time consuming.
This book describes the role of the obligate inhabitants of all vertebrate genomes—endogenous retroviruses, especially those emerged in genomes rather recently, during primate evolution. It specially focuses on human endogenous retroviruses as well as other retroelements.
The success of individualized medicine, advanced crops, and new and sustainable energy sources requires thoroughly annotated genomic information and the integration of this information into a coherent model. A thorough overview of this field, Genome Annotation explores automated genome analysis and annotation from its origins to the challenges of next-generation sequencing data analysis. The book initially takes you through the last 16 years since the sequencing of the first complete microbial genome. It explains how current analysis strategies were developed, including sequencing strategies, statistical models, and early annotation systems. The authors then present visualization techniques for displaying integrated results as well as state-of-the-art annotation tools, including MAGPIE, Ensembl, Bluejay, and Galaxy. They also discuss the pipelines for the analysis and annotation of complex, next-generation DNA sequencing data. Each chapter includes references and pointers to relevant tools. As very few existing genome annotation pipelines are capable of dealing with the staggering amount of DNA sequence information, new strategies must be developed to accommodate the needs of today’s genome researchers. Covering this topic in detail, Genome Annotation provides you with the foundation and tools to tackle this challenging and evolving area. Suitable for both students new to the field and professionals who deal with genomic information in their work, the book offers two genome annotation systems on an accompanying downloadable resources.