Download Free Genomes And Genomics Of Nitrogen Fixing Organisms Book in PDF and EPUB Free Download. You can read online Genomes And Genomics Of Nitrogen Fixing Organisms and write the review.

Genomes and Genomics of Nitrogen-fixing Organisms This is Volume 3 of a seven-volume series on all aspects of Nitrogen Fixation. The series aims to be the definitive authority in the field and to act as a benchmark for some years to come. Rather than attempting to cram the whole field into a single volume, the subject matter is divided among seven volumes to allow authors the luxury of writing in depth with a comprehensive reference base. All authors are recognized practicing scientists in the area of their contribution, which ensures the high quality, relevance, and readability of the chapters. In establishing the rationale for, and the organization of, this book, we realized the need to divide it into two sections. The first section should be organism based and should review our current knowledge of the genomes of nitrogen-fixing organisms and what these nucleotide sequences tell us. The second section should then be technology based. It should review what technologies are available to mine the data inherent in the nucleotide sequences and how they are now being used to produce gene-function data from differential gene expression.
Genomes and Genomics of Nitrogen-fixing Organisms This is Volume 3 of a seven-volume series on all aspects of Nitrogen Fixation. The series aims to be the definitive authority in the field and to act as a benchmark for some years to come. Rather than attempting to cram the whole field into a single volume, the subject matter is divided among seven volumes to allow authors the luxury of writing in depth with a comprehensive reference base. All authors are recognized practicing scientists in the area of their contribution, which ensures the high quality, relevance, and readability of the chapters. In establishing the rationale for, and the organization of, this book, we realized the need to divide it into two sections. The first section should be organism based and should review our current knowledge of the genomes of nitrogen-fixing organisms and what these nucleotide sequences tell us. The second section should then be technology based. It should review what technologies are available to mine the data inherent in the nucleotide sequences and how they are now being used to produce gene-function data from differential gene expression.
The existence of living organisms in diverse ecosystems has been the focus of interest to human beings, primarily to obtain insights into the diversity and dynamics of the communities. This book discusses how the advent of novel molecular biology techniques, the latest being the next-generation sequencing technologies, helps to elucidate the identity of novel organisms, including those that are rare. The book highlights the fact that oceans, marine environments, rivers, mountains and the gut are ecosystems with great potential for obtaining bioactive molecules, which can be used in areas such as agriculture, food, medicine, water supplies and bioremediation. It then describes the latest research in metagenomics, a field that allows elucidation of the maximum biodiversity within an ecosystem, without the need to actually grow and culture the organisms. Further, it describes how human-associated microbes are directly responsible for our health and overall wellbeing.“/p>
Although we can't usually see them, microbes are essential for every part of human life-indeed all life on Earth. The emerging field of metagenomics offers a new way of exploring the microbial world that will transform modern microbiology and lead to practical applications in medicine, agriculture, alternative energy, environmental remediation, and many others areas. Metagenomics allows researchers to look at the genomes of all of the microbes in an environment at once, providing a "meta" view of the whole microbial community and the complex interactions within it. It's a quantum leap beyond traditional research techniques that rely on studying-one at a time-the few microbes that can be grown in the laboratory. At the request of the National Science Foundation, five Institutes of the National Institutes of Health, and the Department of Energy, the National Research Council organized a committee to address the current state of metagenomics and identify obstacles current researchers are facing in order to determine how to best support the field and encourage its success. The New Science of Metagenomics recommends the establishment of a "Global Metagenomics Initiative" comprising a small number of large-scale metagenomics projects as well as many medium- and small-scale projects to advance the technology and develop the standard practices needed to advance the field. The report also addresses database needs, methodological challenges, and the importance of interdisciplinary collaboration in supporting this new field.
This book provides in-depth reviews of the role of Rhizobium in agriculture and its biotechnological applications. Individual chapters explore topics such as: the occurrence and distribution of Rhizobium; phenotypic and molecular characteristics of Rhizobium; impact of Rhizobium on other microbial communities in the rhizosphere; N2-fixation ability of Rhizobium; Rhizobium and biotic stress; Rhizobium-mediated restoration of an ecosystem; in silico analysis of the rhizobia pool; further biotechnological perspectives of Rhizobium.
This book provides an overview of the latest advances concerning symbiotic relationships between plants and microbes, and their applications in plant productivity and agricultural sustainability. Symbiosis is a living phenomenon including dynamic variations in the genome, metabolism and signaling network, and adopting a multidirectional perspective on their interactions is required when studying symbiotic organisms. Although various plant-microbe symbiotic systems are covered in this book, it especially focuses on arbuscular mycorrhiza (AM) symbiosis and root nodule symbiosis, the two most prevalent systems. AM symbiosis involves the most extensive interaction between plants and microbes, in the context of phylogeny and ecology. As more than 90% of all known species of plants have the potential to form mycorrhizal associations, the productivity and species composition, as well as the diversity of natural ecosystems, are frequently dependent upon the presence and activity of mycorrhizas. In turn, root nodule symbiosis includes morphogenesis and is formed by communication between plants and nitrogen-fixing bacteria. The biotechnological application of plant–microbe symbiosis is expected to foster the production of agricultural and horticultural products while maintaining ecologically and economically sustainable production systems. Designed as a hands-on guide, this book offers an essential resource for researchers and students in the areas of agri-biotechnology, soil biology and fungal biology.
This volume is envisioned as a resource for researchers working with beneficial and harmful groups of bacteria associated with crop plants. The book is divided into two parts, with Part I on beneficial bacteria including chapters on symbiotic nitrogen fixers and rhizosphere bacteria. The second part consists of detailed descriptions of 8 genera of plant pathogenic bacteria, including Agrobacterium and Herbaspirillum. Each chapter covers terminology, molecular phylogeny and more. soft-rot, Pseudomonas, Xanthomonas, Ralstonia, Burkholderia and Acidovorax There is an opening chapter on the plant-associated bacteria survey, molecular phylogeny, genomics and recent advances. And each chapter includes terminology/definitions, molecular phylogeny, methods that can be used (both traditional and latest molecular tools) and applications
During the past three decades there has been a large amount of research on biological nitrogen fixation, in part stimulated by increasing world prices of nitrogen-containing fertilizers and environmental concerns. In the last several years, research on plant--microbe interactions, and symbiotic and asymbiotic nitrogen fixation has become truly interdisciplinary in nature, stimulated to some degree by the use of modern genetic techniques. These methodologies have allowed us to make detailed analyses of plant and bacterial genes involved in symbiotic processes and to follow the growth and persistence of the root-nodule bacteria and free-living nitrogen-fixing bacteria in soils. Through the efforts of a large number of researchers we now have a better understanding of the ecology of rhizobia, environmental parameters affecting the infection and nodulation process, the nature of specificity, the biochemistry of host plants and microsymbionts, and chemical signalling between symbiotic partners. This volume gives a summary of current research efforts and knowledge in the field of biological nitrogen fixation. Since the research field is diverse in nature, this book presents a collection of papers in the major research area of physiology and metabolism, genetics, evolution, taxonomy, ecology, and international programs.
The Prokaryotes is a comprehensive, multi-authored, peer reviewed reference work on Bacteria and Achaea. This fourth edition of The Prokaryotes is organized to cover all taxonomic diversity, using the family level to delineate chapters. Different from other resources, this new Springer product includes not only taxonomy, but also prokaryotic biology and technology of taxa in a broad context. Technological aspects highlight the usefulness of prokaryotes in processes and products, including biocontrol agents and as genetics tools. The content of the expanded fourth edition is divided into two parts: Part 1 contains review chapters dealing with the most important general concepts in molecular, applied and general prokaryote biology; Part 2 describes the known properties of specific taxonomic groups. Two completely new sections have been added to Part 1: bacterial communities and human bacteriology. The bacterial communities section reflects the growing realization that studies on pure cultures of bacteria have led to an incomplete picture of the microbial world for two fundamental reasons: the vast majority of bacteria in soil, water and associated with biological tissues are currently not culturable, and that an understanding of microbial ecology requires knowledge on how different bacterial species interact with each other in their natural environment. The new section on human microbiology deals with bacteria associated with healthy humans and bacterial pathogenesis. Each of the major human diseases caused by bacteria is reviewed, from identifying the pathogens by classical clinical and non-culturing techniques to the biochemical mechanisms of the disease process. The 4th edition of The Prokaryotes is the most complete resource on the biology of prokaryotes. The following volumes are published consecutively within the 4th Edition: Prokaryotic Biology and Symbiotic Associations Prokaryotic Communities and Ecophysiology Prokaryotic Physiology and Biochemistry Applied Bacteriology and Biotechnology Human Microbiology Actinobacteria Firmicutes Alphaproteobacteria and Betaproteobacteria Gammaproteobacteria Deltaproteobacteria and Epsilonproteobacteria Other Major Lineages of Bacteria and the Archaea
The turn of the millennium from the twentieth to the twenty-first century provides an occasion to review our understanding of a biological process, biological nitrogen fixation, that is of prime importance for the continued survival of mankind. This process has provided a basis for maintaining soil fertility since the beginning of organised agriculture, yet its very existence was confirmed only just over a century ago. In the intervening years, an enormous intellectual effort has dispersed much of the mystery surrounding biological nitrogen fixation. Biological fixation is widely exploited in agriculture, as are nitrogen fertilisers prepared for the last hundred years under extreme conditions of temperature and pressure. However, despite all our efforts, the fundamental nature of the reactions involved at the heart of the biological process remain unknown. This book aims to describe what we have learned in the last one hundred years or so about biological nitrogen fixation, about what its chemistry appears to be, and how it is applied in agriculture. This ambitious objective has not been attempted recently. It is aimed at students and those who wish to enter these very challenging areas of research, and who need to learn the state of the art at the turn of the millennium.The authors are all acknowledged world experts in their fields. They have prepared concise, well referenced and authoritative accounts of their subjects. This book provides a unique summary of the current state of knowledge that will be indispensable to all students and researchers, actual and potential, interested in biological nitrogen fixation.