Download Free Genetics Of Scots Pine Pinus Sylvestris L Book in PDF and EPUB Free Download. You can read online Genetics Of Scots Pine Pinus Sylvestris L and write the review.

Since the Scots pine species is most important in Eurasia, it was considered necessary to involve authors from as many countries as was possible including Eastern Europe and U.S.S.R. During the 18th IUFRO World Congress in Ljubljana, Yugoslavia, in September 1986, details were worked out for the contents of this book.This book is a truly international effort, prepared in the traditional IUFRO spirit of selfless co-operation. In all, 24 authors from 9 countries are involved. Each chapter was reviewed by two editors from two different countries.
Forest tree breeding has been ongoing for more than 70 years across Europe. It has successfully generated improved varieties for the major economical forest tree species. They are part of the present European forestry landscape and largely contribute to intensive wood production and other forest activities. In this book, we describe the state-of-art of breeding for the main forest tree species. We provide a comprehensive, unique and up-to-date overview of the major scientific results and breeding achievements gathered from the many programmes scattered across Europe. The book is divided into 10 chapters, each as a monograph corresponding to a species or group of species Abies spp., (Larix spp., Picea abies, Picea sitchensis, Pinus sylvestris, Pseudotsuga menziesii, and Mediterranean pines; Acer pseudoplatanus, Fraxinus excelsior, and Prunus avium). Each of them is written by a group of experts and focuses on the distribution and economical importance of the species; motivation for breeding and breeding objectives; intraspecific genetic variability, breeding populations and breeding strategy; forest reproductive material deployment including mass-propagation and, prospects and perspectives for joint research and breeding. The book is a unique and up-dated source of information for students, researchers and professionals interested in the genetics and domestication of forest tree species.
With contributions by internationally reputed researchers in the field, this book presents the implications of the genomic revolution for conifers—promoting a better understanding of the evolution of these organisms as well as new knowledge about the molecular basis of quantitative trait variation. Both of these discoveries play important roles in their domestication. Topics include cytogenetics, patterns of nucleotide diversity, genetic mapping, integration of molecular markers in breeding, transcriptomics, advances in proteomics and metabolomics in gymnosperms, and economic importance.
This book is the first comprehensive volume on conifers detailing their genomes, variations, and evolution. The book begins with general information about conifers such as taxonomy, geography, reproduction, life history, and social and economic importance. Then topics discussed include the full genome sequence, complex traits, phenotypic and genetic variations, landscape genomics, and forest health and conservation. This book also synthesizes the research included to provide a bigger picture and suggest an evolutionary trajectory. As a large plant family, conifers are an important part of economic botany. The group includes the pines, spruces, firs, larches, yews, junipers, cedars, cypresses, and sequoias. Of the phylum Coniferophyta, conifers typically bear cones and evergreen leaves. Recently, there has been much data available in conifer genomics with the publication of several crop and non-crop genome sequences. In addition to their economic importance, conifers are an important habitat for humans and animals, especially in developing parts of the world. The application of genomics for improving the productivity of conifer crops holds great promise to help provide resources for the most needy in the world.
Developments in Plant Genetics and Breeding, 1: Isozymes in Plant Genetics and Breeding, Part B focuses on the advancements in the processes, methodologies, principles, and approaches involved in the study of isozymes, including its role in plant genetics and breeding. The selection first offers information on maize, hexaploid wheat, and barley. Topics include polymorphism, linkage relations, esterases, evolutionary and crop improvement studies, special applications to genetics and breeding, alcohol dehydrogenase, amylase, catalase, and catechol oxidase. The text then examines Secale and triticale, oats, rice, and tomato. The publication takes a look at potato, peppers, and tobacco. Topics include biochemical characterization of isozymes, isozymes in cell and tissue cultures, glutamate dehydrogenase, lactate dehydrogenase and xanthine dehydrogenase, potato as a source of enzymes, and data for esterases in basic gels. The manuscript also tackles conifers, eucalyptus, fruit trees, cucurbits, and cole crops. The selection is a valuable reference for researchers interested in the role of isozymes in plant genetics and breeding.
Air pollutants provide environmental conditions that drastically differ in many respects from those to which forest trees are naturally adapted. Leading experts in the field here consider these questions of immediate relevance arising from the changing environment: (1) Do air pollutants introduce effects of selection that differ from those known for populations that are not subject to such stress conditions? (2) If air pollutants introduce quantitatively or even qualitatively novel selective effects, which consequences might arise from the adaptation of forest tree populations to the present conditions as well as for the preservation of adaptability to future conditions? In addition to these questions, concepts for preservation of genetic resources are discussed.
Changing environmental conditions substantially affect genetic variation and its dynamics in forest ecosystems and various systems of plantations. In response to these challenges, the present book focuses on the response to stress in terms of case studies which address physiological and genetic characters as well as various metric traits. Furthermore a choice of studies is presented which refers to diversity and geographic variation of various species and site conditions, respectively. In addition, genetic resources are characterised and a variety of studies is compiled which address reproduction and migration as well as management aspects. Finally, a set of studies is presented which focus on forest tree breeding with respect to uncertain climatic futures.
Tropical climates, which occur between 23°30'N and S latitude (Jacob 1988), encompass a wide variety of plant communities (Hartshorn 1983, 1988), many of which are diverse in their woody floras. Within this geographic region, temperature and the amount and seasonality of rainfall define habitat types (UNESCO 1978). The F AO has estimated that there 1 are about 19 million km of potentially forested area in the global tropics, of which 58% were estimated to still be in closed forest in the mid-1970s (Sommers 1976; UNESCO 1978). Of this potentially forested region, 42% is categorized as dry forest lifezone, 33% is tropical moist forest, and 25% is wet or rain forest (Lugo 1988). The species diversity of these tropical habitats is very high. Raven (1976, in Mooney 1988) estimated that 65% of the 250,000 or more plant species of the earth are found in tropical regions. Of this floristic assemblage, a large fraction are woody species. In the well-collected tropical moist forest of Barro Colorado Island, Panama, 39. 7% (481 of 1212 species) of the native phanerogams are woody, arborescent species (Croat 1978). Another 21. 9% are woody vines and lianas. Southeast Asian Dipterocarp forests may contain 120-200 species of trees per hectare (Whitmore 1984), and recent surveys in upper Amazonia re corded from 89 to 283 woody species ~ 10 cm dbh per hectare (Gentry 1988). Tropical communities thus represent a global woody flora of significant scope.