Download Free Genetically Modified Plants And Beyond Book in PDF and EPUB Free Download. You can read online Genetically Modified Plants And Beyond and write the review.

Genetically engineered (GE) crops were first introduced commercially in the 1990s. After two decades of production, some groups and individuals remain critical of the technology based on their concerns about possible adverse effects on human health, the environment, and ethical considerations. At the same time, others are concerned that the technology is not reaching its potential to improve human health and the environment because of stringent regulations and reduced public funding to develop products offering more benefits to society. While the debate about these and other questions related to the genetic engineering techniques of the first 20 years goes on, emerging genetic-engineering technologies are adding new complexities to the conversation. Genetically Engineered Crops builds on previous related Academies reports published between 1987 and 2010 by undertaking a retrospective examination of the purported positive and adverse effects of GE crops and to anticipate what emerging genetic-engineering technologies hold for the future. This report indicates where there are uncertainties about the economic, agronomic, health, safety, or other impacts of GE crops and food, and makes recommendations to fill gaps in safety assessments, increase regulatory clarity, and improve innovations in and access to GE technology.
Attitudes to GM crops continue to generate tension, even though they have been grown commercially for over 20 years. Negative sentiment towards their development limits their adoption in Western countries, despite there being no evidence of harm to human health. These unfounded concerns about genetically modified crops have also inhibited uptake in many countries throughout Africa and Asia, having a major impact on agricultural productivity and preventing the widespread cultivation of potentially life-saving crops. GM Crops and the Global Divide traces the historical importance that European attitudes to past colonial influences, aid, trade and educational involvement have had on African leaders and their people. The detrimental impact that these attitudes have on agricultural productivity and food security continues to be of growing importance, especially in light of climate change, drought and the potential rise in sea levels - the effects of which could be mitigated by the cultivation of GM and gene-edited crops. Following on from her previous books Genes for Africa, GM Crops: The Impact and the Potential, and Food for Africa:The Life and Work of a Scientist in GM Crops, Jennifer Thomson unravels the reasons behind these negative attitudes towards GM crop production. By addressing the detrimental effects that anti-GM opinions have on nutrition security in developing countries and providing a clear account of the science to counter these attitudes, she hopes to highlight and ultimately bridge this global divide.
Assists policymakers in evaluating the appropriate scientific methods for detecting unintended changes in food and assessing the potential for adverse health effects from genetically modified products. In this book, the committee recommended that greater scrutiny should be given to foods containing new compounds or unusual amounts of naturally occurring substances, regardless of the method used to create them. The book offers a framework to guide federal agencies in selecting the route of safety assessment. It identifies and recommends several pre- and post-market approaches to guide the assessment of unintended compositional changes that could result from genetically modified foods and research avenues to fill the knowledge gaps.
Genetically Modified Plants and Beyond takes a fresh look at methodologies used in developing crop plants, discusses genome editing, and interrogates the regulatory approaches that different countries are proposing to use to regulate genetically modified (GM) vs genome-edited crop plants. The book focuses on root and tuber crops, ginger, and industrial/oil seed crops. A chapter on the production of pharmaceuticals in plants is also included. Going beyond the usual debate, the book includes case studies from Africa on the adoption of GM crops.
The world is now on the cusp of a new agricultural revolution, the so-called Gene Revolution, in which genetically modified (GM) crops are tailored to address chronic agricultural problems in certain regions of the world. This monograph report investigates the circumstances and processes that can induce and sustain this new agricultural revolution. The authors compare the Green Revolution of the 20th century with the GM crop movement to assess the agricultural, technological, sociological, and political differences between the two movements.
The National Research Council's Roundtable on Public Interfaces of the Life Sciences held a 2-day workshop on January 15-16, 2015, in Washington, DC to explore the public interfaces between scientists and citizens in the context of genetically engineered (GE) organisms. The workshop presentations and discussions dealt with perspectives on scientific engagement in a world where science is interpreted through a variety of lenses, including cultural values and political dispositions, and with strategies based on evidence in social science to improve public conversation about controversial topics in science. The workshop focused on public perceptions and debates about genetically engineered plants and animals, commonly known as genetically modified organisms (GMOs), because the development and application of GMOs are heavily debated among some stakeholders, including scientists. For some applications of GMOs, the societal debate is so contentious that it can be difficult for members of the public, including policy-makers, to make decisions. Thus, although the workshop focused on issues related to public interfaces with the life science that apply to many science policy debates, the discussions are particularly relevant for anyone involved with the GMO debate. Public Engagement on Genetically Modified Organisms: When Science and Citizens Connect summarizes the presentations and discussion of the workshop.
Meeting future food needs without compromising environmental integrity is a central challenge for agriculture globally but especially for the Asia Pacific region – where 60% of the global population, including some of the world’s poorest, live on only 30% of the land mass. To guarantee the food security of this and other regions, growers worldwide are rapidly adopting genetically modified (GM) crops as the forerunner to protect against many biotic and abiotic stresses. Asia Pacific countries play an important role in this, with India, China and Pakistan appearing in the top 10 countries with acreage of GM crops, primarily devoted to Bt cotton. Genetically Modified Crops in Asia Pacific discusses the progress of GM crop adoption across the Asia Pacific region over the past two decades, including research, development, adoption and sustainability, as well as the cultivation of insect resistant Bt brinjal, drought-tolerant sugarcane, late blight resistant potato and biotech rice more specific to this region. Regulatory efforts of the Asia Pacific member nations to ensure the safety of GM crops to both humans and the environment are also outlined to provide impetus in other countries initiating biotech crops. The authors also probe into some aspects of gene editing and nanobiotechnology to expand the scope into next generation GM crops, including the potential to grow crops in acidic soil, reduce methane production, remove poisonous elements from plants and improve overall nutritional quality. Genetically Modified Crops in Asia Pacific provides a comprehensive reference not only for academics, researchers and private sectors in crop systems but also policy makers in the Asia Pacific region. Beyond this region, readers will benefit from understanding how GM crops have been integrated into many different countries and, in particular, the effects of the take-up of GM cropping systems by farmers with different socioeconomic backgrounds.
This book covers a broad spectrum of topics related to GMOs and allied new gene-based technologies, biodiversity, and ecosystem processes, bringing together the contributions of researchers and regulators from around the world. The aim is to offer a clear view of the benefits and effects of genetically modified crops, insects, and other animals on the soil microbiome and ecological processes. Contributors examine issues related to the development of risk assessment procedures and regulations designed to maximize benefits while minimizing risks. Beyond the scientific challenges of GMOs, the book explores the broad and contentious terrain of ethical considerations. The contributors discuss such questions as the unintended, possibly unforeseen, consequences of releasing GMOs into ecosystems, and the likelihood that the full effects of GMOs could take years, even decades, of close monitoring to become evident. The importance of developing a precautionary approach is stressed. The final chapter describes the critical issues of governance and regulation of new and emerging gene-based technologies, as nations grapple with the consequences of adopting the Cartagena Protocol on Biosafety (CPB). The volume includes an extensive Annex which outlines legal perspectives on the state of GMO governance around the world, with more than 20 examples from nations in Africa, South and Central America, Asia, Australasia, and Europe.
In 2001 the Human Genome Project announced that it had successfully mapped the entire genetic content of human DNA. Scientists, politicians, theologians, and pundits speculated about what would follow, conjuring everything from nightmare scenarios of state-controlled eugenics to the hope of engineering disease-resistant newborns. As with debates surrounding stem-cell research, the seemingly endless possibilities of genetic engineering will continue to influence public opinion and policy into the foreseeable future. Beyond Biotechnology: The Barren Promise of Genetic Engineering distinguishes between the hype and reality of this technology and explains the nuanced and delicate relationship between science and nature. Authors Craig Holdrege and Steve Talbott evaluate the current state of genetic science and examine its potential applications, particularly in agriculture and medicine, as well as the possible dangers. The authors show how the popular view of genetics does not include an understanding of the ways in which genes actually work together in organisms. Simplistic and reductionist views of genes lead to unrealistic expectations and, ultimately, disappointment in the results that genetic engineering actually delivers. The authors explore new developments in genetics, from the discovery of "non-Darwinian" adaptative mutations in bacteria to evidence that suggests that organisms are far more than mere collections of genetically driven mechanisms. While examining these issues, the authors also answer vital questions that get to the essence of genetic interaction with human biology: Does DNA "manage" an organism any more than the organism manages its DNA? Should genetically engineered products be labeled as such? Do the methods of the genetic engineer resemble the centuries-old practices of animal husbandry? Written for lay readers, Beyond Biotechnology is an accessible introduction to the complicated issues of genetic engineering and its potential applications. In the unexplored space between nature and laboratory, a new science is waiting to emerge. Technology-based social and environmental solutions will remain tenuous and at risk of reversal as long as our culture is alienated from the plants and animals on which all life depends.
Insect pests remain one of the main constraints to food and fiber production worldwide despite farmers deploying a range of techniques to protect their crops. Modern pest control is guided by the principles of integrated pest management (IPM) with pest resistant germplasm being an important part of the foundation. Since 1996, when the first genetically modified (GM) insect-resistant maize variety was commercialized in the USA, the area planted to insect-resistant GM varieties has grown dramatically, representing the fastest adoption rate of any agricultural technology in human history. The goal of our book is to provide an overview on the role insect-resistant GM plants play in different crop systems worldwide. We hope that the book will contribute to a more rational debate about the role GM crops can play in IPM for food and fiber production.