Download Free Genetic Mapping And Genome Analysis Of Grape Vitis Sp Book in PDF and EPUB Free Download. You can read online Genetic Mapping And Genome Analysis Of Grape Vitis Sp and write the review.

This book describes the current state of international grape genomics, with a focus on the latest findings, tools and strategies employed in genome sequencing and analysis, and genetic mapping of important agronomic traits. It also discusses how these are having a direct impact on outcomes for grape breeders and the international grape research community. While V. vinifera is a model species, it is not always appreciated that its cultivation usually requires the use of other Vitis species as rootstocks. The book discusses genetic diversity within the Vitis genus, the available genetic resources for breeding, and the available genomic resources for other Vitis species. Grapes (Vitis vinifera spp. vinifera) have been a source of food and wine since their domestication from their wild progenitor (Vitis vinifera ssp. sylvestris) around 8,000 years ago, and they are now the world’s most valuable horticultural crop. In addition to being economically important, V. vinifera is also a model organism for the study of perennial fruit crops for two reasons: Firstly, its ability to be transformed and micropropagated via somatic embryogenesis, and secondly its relatively small genome size of 500 Mb. The economic importance of grapes made V. vinifera an obvious early candidate for genomic sequencing, and accordingly, two draft genomes were reported in 2007. Remarkably, these were the first genomes of any fruiting crop to be sequenced and only the fourth for flowering plants. Although riddled with gaps and potentially omitting large regions of repetitive sequences, the two genomes have provided valuable insights into grape genomes. Cited in over 2,000 articles, the genome has served as a reference in more than 3,000 genome-wide transcriptional analyses. Further, recent advances in DNA sequencing and bioinformatics are enabling the assembly of reference-grade genome references for more grape genotypes revealing the exceptional extent of structural variation in the species.
Grapevine Breeding Programs for the Wine Industry: Traditional and Molecular Techniques summarizes recent trends in grapevine breeding, both in terms of research and practical programs. The first group of chapters covers the challenges faced by breeders and existing and emerging techniques used to combat them. Two further groups of chapters focus on grapevine breeding programs in different wine-producing countries around the world. With authoritative contributions from experts across the world's winemaking regions, this book will be an essential reference for all those involved in viticulture and oeneology wanting to explore new methods, understand different approaches and refine existing practices. - Covers challenges faced by breeders - Highlights grapevine breeding programs in different wine-producing countries - Contributions from experts across the world's winemaking regions
The book deals with biological, mathematical, descriptive, causal and systemic phyllotaxis. It aims at reflecting the widest possible range of ideas and research closely related to phyllotaxis and contains 30 well illustrated chapters.The book has three parts of equal importance. The first two parts concern data collecting, pattern recognition and pattern generation to which students of phyllotaxis are well accustomed. The third part is devoted to the problem of origins of phyllotactic patterns, giving the field of phyllotaxis the universality it requires to be fully understood.Phyllotaxis-like patterns are found in places where genes are not necessarily present. Part III concerns general comparative morphology, homologies with phyllotactic patterns, and recent trends on evolution that can help to understand phyllotaxis.The distinguished researchers who accepted to participate in the production of this book, strongly contributed to the field of phyllotaxis in the past and have devoted a lot of their time to the fascinating subject coming up with most valuable findings, or are newcomers with original ideas that may be very relevant for the future of the field. The book summarizes and updates their contributions, and promotes new avenues in the treatment of phyllotaxis.This book on mathematical and biological phyllotaxis is the first collective book ever. A landmark in the history of phyllotaxis.
The domestication of grapes dates back five thousand years ago and has spread to nearly all continents. In recent years, grape acreage has increased dramatically in new regions, including the United States of America, Chile, Asia (China and India), and Turkey. A major limiting factor to the sustained production of premium grapes and wines is infections by viruses. The advent of powerful molecular and metagenomics technologies, such as molecular cloning and next generation sequencing, allowed the discovery of new viruses from grapes. To date, grapevine is susceptible to 64 viruses that belong to highly diverse taxonomic groups. The most damaging diseases include: (1) infectious degeneration; (2) leafroll disease complex; and (3) rugose wood complex. Recently, two new disease syndromes have been recognized: Syrah decline and red blotch. Losses due to fanleaf degeneration are estimated at $1 billion annually in France alone. Other diseases including leafroll, rugose wood, Syrah de cline and red blotch can result in total crop loss several years post-infection. This situation is further exacerbated by mixed infections with multiple viruses and other biotic as well as adverse abiotic environmental conditions, such as drought and winter damage, causing even greater destruction. The book builds upon the last handbook (written over twenty years ago) on the part of diagnostics and extensively expands its scope by inclusion of molecular biology aspects of select viruses that are widespread and economically most important. This includes most current information on the biology, transmission, genome replication, transcription, subcellular localization, as well as virus-host interactions. It also touches on several novel areas of scientific inquiry. It also contains suggested directions for future research in the field of grapevine virology.
Molecular approaches have opened new windows on a host of ecological and evolutionary disciplines, ranging from population genetics and behavioral ecology to conservation biology and systematics. Molecular Markers, Natural History and Evolution summarizes the multi-faceted discoveries about organisms in nature that have stemmed from analyses of genetic markers provided by polymorphic proteins and DNAs. The first part of the book introduces rationales for the use of molecular markers, provides a history of molecular phylogenetics, and describes a wide variety of laboratory methods and interpretative tools in the field. The second and major portion of the book provides a cornucopia of biological applications for molecular markers, organized along a scale from micro-evolutionary topics (such as forensics, parentage, kinship, population structure, and intra-specific phylogeny) to macro-evolutionary themes (including species relationships and the deeper phylogenetic structure in the tree of life). Unlike most prior books in molecular evolution, the focus is on organismal natural history and evolution, with the macromolecules being the means rather than the ends of scientific inquiry. Written as an intellectual stimulus for the advanced undergraduate, graduate student, or the practicing biologist desiring a wellspring of research ideas at the interface of molecular and organismal biology, this book presents material in a manner that is both technically straightforward, yet rich with concepts and with empirical examples from the world of nature.
"Grapes (Vitis spp.) are economically significant fruit species. Many scientific advances have been achieved in understanding physiological, biochemical, and molecular aspects of grape berry maturation. Some of these advances have led to the improvement of"
This book describes the strategy used for sequencing, assembling and annotating the tomato genome and presents the main characteristics of this sequence with a special focus on repeated sequences and the ancestral polyploidy events. It also includes the chloroplast and mitochondrial genomes. Tomato (Solanum lycopersicum) is a major crop plant as well as a model for fruit development, and the availability of the genome sequence has completely changed the paradigm of the species’ genetics and genomics. The book describes the numerous genetic and genomic resources available, the identified genes and quantitative trait locus (QTL) identified, as well as the strong synteny across Solanaceae species. Lastly, it discusses the consequences of the availability of a high-quality genome sequence of the cultivated species for the research community. It is a valuable resource for students and researchers interested in the genetics and genomics of tomato and Solanaceae.
Grapevine is one of the most widely cultivated plant species worldwide. With the publication of the grapevine genome sequence in 2007, a new horizon in grapevine research has unfolded. Thus, we felt that a new edition of ‘Molecular Biology & Biotechnology of the Grapevine’ could expand on all the latest scientific developments. In this edition and with the aid of 73 scientists from 15 countries, ten chapters describe new aspects of Grapevine Molecular Physiology and Biotechnology and eleven chapters have been revised and updated. This book is intended to be a reference book for researchers, scientists and biotechnological companies, who want to be updated in viticultural research, but also it can be used as a textbook for graduate and undergraduate students, who are interested in the Molecular Biology and Biotechnology of Plants with an emphasis on the Grapevine.
This book describes the historical importance of potato (Solanum tuberosum L.),potato genetic resources and stocks (including S. tuberosum group Phureja DM1-3 516 R44, a unique doubled monoploid homozygous line) used for potato genome sequencing. It also discusses strategies and tools for high-throughput sequencing, sequence assembly, annotation, analysis, repetitive sequences and genotyping-by-sequencing approaches. Potato (Solanum tuberosum L.; 2n = 4x = 48) is the fourth most important food crop of the world after rice, wheat and maize and holds great potential to ensure both food and nutritional security. It is an autotetraploid crop with complex genetics, acute inbreeding depression and a highly heterozygous nature. Further, the book examines the recent discovery of whole genome sequencing of a few wild potato species genomes, genomics in management and genetic enhancement of Solanum species, new strategies towards durable potato late blight resistance, structural analysis of resistance genes, genomics resources for abiotic stress management, as well as somatic cell genetics and modern approaches in true-potato-seed technology. The complete genome sequence provides a better understanding of potato biology, underpinning evolutionary process, genetics, breeding and molecular efforts to improve various important traits involved in potato growth and development.