Download Free Genetic Damage In Human Spermatozoa Book in PDF and EPUB Free Download. You can read online Genetic Damage In Human Spermatozoa and write the review.

There are several types of damage that can be found in the male gamete. Genetic damage in spermatozoa can originate during spermatogenesis, or it can originate during transit in both male and female genital tracts. Damage can also be due to ageing, environmental or iatrogenic conditions, as well as to the protocols to cryopreserve and to select spermatozoa in assisted reproduction techniques. The purpose of this book is to provide a comprehensive resource for all possible DNA damages in sperm, the relation to fertility and infertility, and possible transgenerational heritable effects.
Sperm DNA damage is common and has been associated with reduced rates of conception, impaired embryonic development and increased risk of miscarriage. Although the exact causes of sperm DNA damage are unknown, it is clear that infertile men possess substantially higher levels of sperm DNA damage than do fertile men. Written by leading, internationally renowned clinicians and basic scientists with expertise in sperm DNA, Sperm Chromatin: Biological and Clinical Applications in Male Infertility and Assisted Reproduction provides readers with a thoughtful and comprehensive review of the biological and clinical significance of sperm DNA damage. The work covers the fundamental principles of sperm chromatin architecture and function, the proposed modes of DNA damage and repair, the tests of sperm DNA damage, the clinical aspects of DNA damage and the impact of DNA damage on reproductive outcome. Unlike any other title on the topic, Sperm Chromatin: Biological and Clinical Applications in Male Infertility and Assisted Reproduction is an invaluable addition to the literature and will serve as an indispensable resource for basic scientists with an interest in sperm biology and for urologists, gynecologists, reproductive endocrinologists, and embryologists working in the field of infertility.
Focusing on modern sperm function testing, this guide is essential in selecting sperm that will produce viable and healthy embryos.
Male germ line mutagenesis and the effects on developmental defects in the next generation.
The specialty of fertility preservation offers patients with cancer, who are rendered infertile by chemo- and radiotherapy, the opportunity to realize their reproductive potential. This gold-standard publication defines the specialty. The full range of techniques and scientific concepts is covered in detail, and the author team includes many of the world's leading experts in the field. The book opens with introductions to fertility preservation in both cancer and non-cancer patients, followed by cancer biology, epidemiology and treatment, and reproductive biology and cryobiology. Subsequent sections cover fertility preservation strategies in males and females, including medical/surgical procedures, ART, cryopreservation and transplantation of both ovarian tissue and the whole ovary, and in-vitro follicle growth and maturation. Concluding chapters address future technologies, as well as ethical, legal and religious issues. Richly illustrated throughout, this is a key resource for all clinicians specializing in reproductive medicine, gynecology, oncology, hematology, endocrinology and infertility.
Infertility affects more than one in ten couples worldwide and is related to highly heterogeneous pathologies sometimes only discernible in the germ line. Its complex etiology often, but not always, includes genetic factors besides anatomical defects, immunological interference, and environmental aspects. Nearly 30% of infertility cases are probably caused only by genetic defects. Thereby experimental animal knockout models convincingly show that infertility can be caused by single or multiple gene defects. Translating those basic research findings into clinical studies is challenging, leaving genetic causes for the vast majority of infertility patients unexplained. Nevertheless, a large number of candidate genes have been revealed by sophisticated molecular methods. This book provides a comprehensive overview on the subject of infertility written by the leading authorities in this field. It covers topics including basic biological, cytological, and molecular studies, as well as common and uncommon syndromes. It is a must-read for human geneticists, endocrinologists, epidemiologists, zoologists, and counsellors in human genetics, infertility, and assisted reproduction.
Male factor infertility is receiving greater emphasis in IVF programs. This book reviews the scientific evidence for various medical, environmental and lifestyle factors that can affect male fertility, such as chromosome abnormalities, age, anti-sperm antibodies and endocrine disruptors. Part of a four-book series on improving IVF success, this volume subsequently explores a range of treatments and strategies to improve sperm quality, including FSH treatment and antioxidants. It also discusses methods to prevent male infertility from childhood through to adulthood. Concise, practical and evidence-based - and with insights from global experts in the field - this text will enable gynecologists, urologists and andrologists to make evidence-based decisions that can influence the success rate of fertilization in subsequent IVF cycles.
This comprehensive, up-to-date text, which brings together the key practical elements of the rapidly evolving field of sperm DNA and chromatin abnormalities, is divided thematically into five main sections. Part I discusses human sperm chromatin structure and nuclear architecture, while part II presents laboratory evaluation of sperm DNA damage, including SCSA, SCD, TUNEL and Comet assays, and cytochemical tests. Biological and clinical factors in the etiology of sperm DNA damage are discussed in part III, including oxidative stress, abortive apoptosis, cancer, and environmental and lifestyle factors. Part IV presents clinical studies on the utility of sperm DNA damage tests, both with natural and ART-assisted pregnancies, and debates the clinical utility of such tests. Finally, part V discusses current treatment options, such as antioxidant therapy, varicocelectomy, advanced sperm processing techniques and the use of testicular sperm. We are now beginning to better understand the unique organization of the sperm chromatin, as well as the nature and etiology of sperm DNA damage. Written and edited by worldwide experts in andrology, A Clinician's Guide to Sperm DNA and Chromatin Damage is an excellent resource for reproductive medicine and REI specialists, urologists, reproductive biologists and any professional working with the infertile male.
This book reevaluates the health risks of ionizing radiation in light of data that have become available since the 1980 report on this subject was published. The data include new, much more reliable dose estimates for the A-bomb survivors, the results of an additional 14 years of follow-up of the survivors for cancer mortality, recent results of follow-up studies of persons irradiated for medical purposes, and results of relevant experiments with laboratory animals and cultured cells. It analyzes the data in terms of risk estimates for specific organs in relation to dose and time after exposure, and compares radiation effects between Japanese and Western populations.
Heritable human genome editing - making changes to the genetic material of eggs, sperm, or any cells that lead to their development, including the cells of early embryos, and establishing a pregnancy - raises not only scientific and medical considerations but also a host of ethical, moral, and societal issues. Human embryos whose genomes have been edited should not be used to create a pregnancy until it is established that precise genomic changes can be made reliably and without introducing undesired changes - criteria that have not yet been met, says Heritable Human Genome Editing. From an international commission of the U.S. National Academy of Medicine, U.S. National Academy of Sciences, and the U.K.'s Royal Society, the report considers potential benefits, harms, and uncertainties associated with genome editing technologies and defines a translational pathway from rigorous preclinical research to initial clinical uses, should a country decide to permit such uses. The report specifies stringent preclinical and clinical requirements for establishing safety and efficacy, and for undertaking long-term monitoring of outcomes. Extensive national and international dialogue is needed before any country decides whether to permit clinical use of this technology, according to the report, which identifies essential elements of national and international scientific governance and oversight.