Download Free Genetic And Pharmacological Approaches Demonstrate Extrinsic Regulation Of Oogenesis In Drosophila Melanogaster Book in PDF and EPUB Free Download. You can read online Genetic And Pharmacological Approaches Demonstrate Extrinsic Regulation Of Oogenesis In Drosophila Melanogaster and write the review.

This book will give an overview of insect ovaries, showing the diversities and the common traits in egg growth processes. The idea to write this book developed while looking at the flood of information which appeared in the early 1980s on early pattern formation in Drosophila embryos. At this time a significant breakthrough was made in studies of this little fly, combining molecular biological methods with classical and molecular genetics. The answers to questions about early pattern formation raised new questions about the architecture of ovaries and the growth of eggs within these ovaries. However, by concentrating only on Drosophila it is not possible to form an adequate picture of what is going on in insect ovaries, since the enormous diversity found among insects is not considered sufficiently. Almost forgotten, but the first to study the architecture of ovaries, was Alexander Brandt writing in 1878 in aber das Ei und seine Bildungsstaette (On the egg and its organ of development). More than 100 years later, a series of ten books or more would be required to survey all the serious informa tion we have today on insect oogenesis. Thus, this book is a personal selection and personal view on the theme, and the authors must be excused by all those scientists whose papers could not be included. The book briefly describes the ectodemes, i. e.
This volume covers the current knowledge base on the role of signaling and environmental pathways that control the normal development of germline stem cells, meiotic progression of oocytes, events of oocyte maturation and fertilization, and the birth of an embryo. Germ cells are uniquely poised to sustain life across generations through the fusion of oocyte and sperm. Because of the central importance of germ cells to life, much work has been dedicated to obtaining a clear understanding of the molecular and signaling events that control their formation and maintenance. Germ cells are set aside from somatic cells in the embryo and go through specialized meiotic cell cycles as the animal matures. These cell cycles are interspersed with long periods of arrest. In human females, meiosis I is initiated in the fetus. At birth, oocytes are arrested in meiosis I; after puberty, every month an oocyte initiates meiosis II – ovulation. Upon sperm availability these cells are fertilized, generate an embryo, and the cycle-of-life continues. During meiotic I progression and arrest, the fitness of oocytes and their progeny are likely influenced by environmental cues and signaling pathways. A lot of recent work has focused on understanding the mechanisms that regulate oocyte fitness and quality in humans and vertebrates. Much of our understanding on the events of meiosis I and germline stem cell populations comes from work in invertebrates, wherein the germline stem cells produce oocytes continuously through adult development. In both inverbrates and vertebrates nutritional and signaling pathways control the regulation of stem cells in such a manner so as to couple production of gametes with the nutritional availability. Additionally, mature oocytes arrest both in meiosis I and meiosis II, and signaling and nutritional pathways have been shown to regulate their formation, and maintenance, such that despite long periods of arrest, the oocyte quality is assured and errors in chromosome segregation and varied cytoplasmic events are minimal.
This volume provides current up-to-date protocols for preparing the ovary for various imaging techniques, genetic protocols for generating mutant clones, mosaic analysis and assessing cell death. Chapters address methods for performing genome wide gene expression analysis and bioinformatics for studies of RNA-protein interactions. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Drosophila Oogenesis: Methods and Protocols aims to ensure successful results in the further study of this vital field.
Life history theory seeks to explain the evolution of the major features of life cycles by analyzing the ecological factors that shape age-specific schedules of growth, reproduction, and survival and by investigating the trade-offs that constrain the evolution of these traits. Although life history theory has made enormous progress in explaining the diversity of life history strategies among species, it traditionally ignores the underlying proximate mechanisms. This novel book argues that many fundamental problems in life history evolution, including the nature of trade-offs, can only be fully resolved if we begin to integrate information on developmental, physiological, and genetic mechanisms into the classical life history framework. Each chapter is written by an established or up-and-coming leader in their respective field; they not only represent the state of the art but also offer fresh perspectives for future research. The text is divided into 7 sections that cover basic concepts (Part 1), the mechanisms that affect different parts of the life cycle (growth, development, and maturation; reproduction; and aging and somatic maintenance) (Parts 2-4), life history plasticity (Part 5), life history integration and trade-offs (Part 6), and concludes with a synthesis chapter written by a prominent leader in the field and an editorial postscript (Part 7).
Most biological pathways, physical and neurological properties are highly conserved between humans and Drosophila and nearly 75% of human disease-causing genes have a functional homologue in Drosophila. This volume provides recent advances in Drosophila models for various human diseases, with each chapter providing a review of studies involving Drosophila models, as well as detailed protocols commonly used in laboratories. Starting with a review of Drosophila’s value as a highly tractable model organism for studying human diseases, subsequent chapters present Drosophila models for specific human diseases. The book provides a useful resource for all scientists who are starting to use the Drosophila model in their studies, and for researchers working in the pharmaceutical industry and using new screening models to develop new medicines for various diseases.
Stem cells are the focus of intense interest from a growing, multidisciplinary community of investigators with new tools for isolating and characterizing these elusive cell types. This volume, which features contributions from many of the world's leading laboratories, provides a uniquely broad and authoritative basis for understanding the biology of stem cells and the current excitement about their potential for clinical exploitation. It is an essential work of reference for investigators in embryology, hematology, and neurobiology, and their potential for clinical exploitation. It is an essential work of reference for investigators in embryology, hematology, and neurobiology, and their collaborators in the emerging field of regenerative medicine.