Download Free Genetic Algorithms In Economics And Finance Book in PDF and EPUB Free Download. You can read online Genetic Algorithms In Economics And Finance and write the review.

After a decade of development, genetic algorithms and genetic programming have become a widely accepted toolkit for computational finance. Genetic Algorithms and Genetic Programming in Computational Finance is a pioneering volume devoted entirely to a systematic and comprehensive review of this subject. Chapters cover various areas of computational finance, including financial forecasting, trading strategies development, cash flow management, option pricing, portfolio management, volatility modeling, arbitraging, and agent-based simulations of artificial stock markets. Two tutorial chapters are also included to help readers quickly grasp the essence of these tools. Finally, a menu-driven software program, Simple GP, accompanies the volume, which will enable readers without a strong programming background to gain hands-on experience in dealing with much of the technical material introduced in this work.
This book explores the intuitive appeal of neural networks and the genetic algorithm in finance. It demonstrates how neural networks used in combination with evolutionary computation outperform classical econometric methods for accuracy in forecasting, classification and dimensionality reduction. McNelis utilizes a variety of examples, from forecasting automobile production and corporate bond spread, to inflation and deflation processes in Hong Kong and Japan, to credit card default in Germany to bank failures in Texas, to cap-floor volatilities in New York and Hong Kong. * Offers a balanced, critical review of the neural network methods and genetic algorithms used in finance * Includes numerous examples and applications * Numerical illustrations use MATLAB code and the book is accompanied by a website
This book covers the techniques of data mining, knowledge discovery, genetic algorithms, neural networks, bootstrapping, machine learning, and Monte Carlo simulation. Computational finance, an exciting new cross-disciplinary research area, draws extensively on the tools and techniques of computer science, statistics, information systems, and financial economics. This book covers the techniques of data mining, knowledge discovery, genetic algorithms, neural networks, bootstrapping, machine learning, and Monte Carlo simulation. These methods are applied to a wide range of problems in finance, including risk management, asset allocation, style analysis, dynamic trading and hedging, forecasting, and option pricing. The book is based on the sixth annual international conference Computational Finance 1999, held at New York University's Stern School of Business.
When you combine nature's efficiency and the computer's speed, thefinancial possibilities are almost limitless. Today's traders andinvestment analysts require faster, sleeker weaponry in today'sruthless financial marketplace. Battles are now waged at computerspeed, with skirmishes lasting not days or weeks, but mere hours.In his series of influential articles, Richard Bauer has shown whythese professionals must add new computerized decision-making toolsto their arsenal if they are to succeed. In Genetic Algorithms andInvestment Strategies, he uniquely focuses on the most powerfulweapon of all, revealing how the speed, power, and flexibility ofGAs can help them consistently devise winning investmentstrategies. The only book to demonstrate how GAs can workeffectively in the world of finance, it first describes thebiological and historical bases of GAs as well as othercomputerized approaches such as neural networks and chaos theory.It goes on to compare their uses, advantages, and overallsuperiority of GAs. In subsequently presenting a basic optimizationproblem, Genetic Algorithms and Investment Strategies outlines theessential steps involved in using a GA and shows how it mimicsnature's evolutionary process by moving quickly toward anear-optimal solution. Introduced to advanced variations ofessential GA procedures, readers soon learn how GAs can be usedto: * Solve large, complex problems and smaller sets of problems * Serve the needs of traders with widely different investmentphilosophies * Develop sound market timing trading rules in the stock and bondmarkets * Select profitable individual stocks and bonds * Devise powerful portfolio management systems Complete with information on relevant software programs, a glossaryof GA terminology, and an extensive bibliography coveringcomputerized approaches and market timing, Genetic Algorithms andInvestment Strategies unveils in clear, nontechnical language aremarkably efficient strategic decision-making process that, whenimaginatively used, enables traders and investment analysts to reapsignificant financial rewards.
After a decade's development, evolutionary computation (EC) proves to be a powerful tool kit for economic analysis. While the demand for this equipment is increasing, there is no volume exclusively written for economists. This volume for the first time helps economists to get a quick grasp on how EC may support their research. A comprehensive coverage of the subject is given, that includes the following three areas: game theory, agent-based economic modelling and financial engineering. Twenty leading scholars from each of these areas contribute a chapter to the volume. The reader will find himself treading the path of the history of this research area, from the fledgling stage to the burgeoning era. The results on games, labour markets, pollution control, institution and productivity, financial markets, trading systems design and derivative pricing, are new and interesting for different target groups. The book also includes informations on web sites, conferences, and computer software.
Optimization techniques have developed into a significant area concerning industrial, economics, business, and financial systems. With the development of engineering and financial systems, modern optimization has played an important role in service-centered operations and as such has attracted more attention to this field. Meta-heuristic hybrid optimization is a newly development mathematical framework based optimization technique. Designed by logicians, engineers, analysts, and many more, this technique aims to study the complexity of algorithms and problems. Meta-Heuristics Optimization Algorithms in Engineering, Business, Economics, and Finance explores the emerging study of meta-heuristics optimization algorithms and methods and their role in innovated real world practical applications. This book is a collection of research on the areas of meta-heuristics optimization algorithms in engineering, business, economics, and finance and aims to be a comprehensive reference for decision makers, managers, engineers, researchers, scientists, financiers, and economists as well as industrialists.
"This book identifies the economic as well as financial problems that may be solved efficiently with computational methods and explains why those problems should best be solved with computational methods"--Provided by publisher.
It is widely recognised that mainstream economics has failed to translate micro consistently into macro economics and to provide endogenous explanations for the continual changes in the economic system. Since the early 1980s, a growing number of economists have been trying to provide answers to these two key questions by applying an evolutionary approach. This new departure has yielded a rich literature with enormous variety, but the unifying principles connecting the various ideas and views presented are, as yet, not apparent. This 2005 volume brings together fifteen original articles from scholars - each of whom has made a significant contribution to the field - in their common effort to reconstruct economics as an evolutionary science. Using meso economics as an analytical entity to bridge micro and macro economics as well as static and dynamic realms, a unified economic theory emerges.
Genetic programming is a new and evolutionary method that has become a novel area of research within artificial intelligence known for automatically generating high-quality solutions to optimization and search problems. This automatic aspect of the algorithms and the mimicking of natural selection and genetics makes genetic programming an intelligent component of problem solving that is highly regarded for its efficiency and vast capabilities. With the ability to be modified and adapted, easily distributed, and effective in large-scale/wide variety of problems, genetic algorithms and programming can be utilized in many diverse industries. This multi-industry uses vary from finance and economics to business and management all the way to healthcare and the sciences. The use of genetic programming and algorithms goes beyond human capabilities, enhancing the business and processes of various essential industries and improving functionality along the way. The Research Anthology on Multi-Industry Uses of Genetic Programming and Algorithms covers the implementation, tools and technologies, and impact on society that genetic programming and algorithms have had throughout multiple industries. By taking a multi-industry approach, this book covers the fundamentals of genetic programming through its technological benefits and challenges along with the latest advancements and future outlooks for computer science. This book is ideal for academicians, biological engineers, computer programmers, scientists, researchers, and upper-level students seeking the latest research on genetic programming.
“Practical Applications of Evolutionary Computation to Financial Engineering” presents the state of the art techniques in Financial Engineering using recent results in Machine Learning and Evolutionary Computation. This book bridges the gap between academics in computer science and traders and explains the basic ideas of the proposed systems and the financial problems in ways that can be understood by readers without previous knowledge on either of the fields. To cement the ideas discussed in the book, software packages are offered that implement the systems described within. The book is structured so that each chapter can be read independently from the others. Chapters 1 and 2 describe evolutionary computation. The third chapter is an introduction to financial engineering problems for readers who are unfamiliar with this area. The following chapters each deal, in turn, with a different problem in the financial engineering field describing each problem in detail and focusing on solutions based on evolutionary computation. Finally, the two appendixes describe software packages that implement the solutions discussed in this book, including installation manuals and parameter explanations.