Download Free Genericity In Polynomial Optimization Book in PDF and EPUB Free Download. You can read online Genericity In Polynomial Optimization and write the review.

In full generality, minimizing a polynomial function over a closed semi-algebraic set requires complex mathematical equations. This book explains recent developments from singularity theory and semi-algebraic geometry for studying polynomial optimization problems. Classes of generic problems are defined in a simple and elegant manner by using only the two basic (and relatively simple) notions of Newton polyhedron and non-degeneracy conditions associated with a given polynomial optimization problem. These conditions are well known in singularity theory, however, they are rarely considered within the optimization community.Explanations focus on critical points and tangencies of polynomial optimization, Hölderian error bounds for polynomial systems, Frank-Wolfe-type theorem for polynomial programs and well-posedness in polynomial optimization. It then goes on to look at optimization for the different types of polynomials. Through this text graduate students, PhD students and researchers of mathematics will be provided with the knowledge necessary to use semi-algebraic geometry in optimization.
An accessible introduction to convex algebraic geometry and semidefinite optimization. For graduate students and researchers in mathematics and computer science.
Moment and polynomial optimization is an active research field used to solve difficult questions in many areas, including global optimization, tensor computation, saddle points, Nash equilibrium, and bilevel programs, and it has many applications. The author synthesizes current research and applications, providing a systematic introduction to theory and methods, a comprehensive approach for extracting optimizers and solving truncated moment problems, and a creative methodology for using optimality conditions to construct tight Moment-SOS relaxations. This book is intended for applied mathematicians, engineers, and researchers entering the field. It can be used as a textbook for graduate students in courses on convex optimization, polynomial optimization, and matrix and tensor optimization.
Semidefinite and conic optimization is a major and thriving research area within the optimization community. Although semidefinite optimization has been studied (under different names) since at least the 1940s, its importance grew immensely during the 1990s after polynomial-time interior-point methods for linear optimization were extended to solve semidefinite optimization problems. Since the beginning of the 21st century, not only has research into semidefinite and conic optimization continued unabated, but also a fruitful interaction has developed with algebraic geometry through the close connections between semidefinite matrices and polynomial optimization. This has brought about important new results and led to an even higher level of research activity. This Handbook on Semidefinite, Conic and Polynomial Optimization provides the reader with a snapshot of the state-of-the-art in the growing and mutually enriching areas of semidefinite optimization, conic optimization, and polynomial optimization. It contains a compendium of the recent research activity that has taken place in these thrilling areas, and will appeal to doctoral students, young graduates, and experienced researchers alike. The Handbook’s thirty-one chapters are organized into four parts: Theory, covering significant theoretical developments as well as the interactions between conic optimization and polynomial optimization; Algorithms, documenting the directions of current algorithmic development; Software, providing an overview of the state-of-the-art; Applications, dealing with the application areas where semidefinite and conic optimization has made a significant impact in recent years.
Polynomial optimization have been a hot research topic for the past few years and its applications range from Operations Research, biomedical engineering, investment science, to quantum mechanics, linear algebra, and signal processing, among many others. In this brief the authors discuss some important subclasses of polynomial optimization models arising from various applications, with a focus on approximations algorithms with guaranteed worst case performance analysis. The brief presents a clear view of the basic ideas underlying the design of such algorithms and the benefits are highlighted by illustrative examples showing the possible applications. This timely treatise will appeal to researchers and graduate students in the fields of optimization, computational mathematics, Operations Research, industrial engineering, and computer science.
Many applications, including computer vision, computer arithmetic, deep learning, entanglement in quantum information, graph theory and energy networks, can be successfully tackled within the framework of polynomial optimization, an emerging field with growing research efforts in the last two decades. One key advantage of these techniques is their ability to model a wide range of problems using optimization formulations. Polynomial optimization heavily relies on the moment-sums of squares (moment-SOS) approach proposed by Lasserre, which provides certificates for positive polynomials. On the practical side, however, there is 'no free lunch' and such optimization methods usually encompass severe scalability issues. Fortunately, for many applications, including the ones formerly mentioned, we can look at the problem in the eyes and exploit the inherent data structure arising from the cost and constraints describing the problem.This book presents several research efforts to resolve this scientific challenge with important computational implications. It provides the development of alternative optimization schemes that scale well in terms of computational complexity, at least in some identified class of problems. It also features a unified modeling framework to handle a wide range of applications involving both commutative and noncommutative variables, and to solve concretely large-scale instances. Readers will find a practical section dedicated to the use of available open-source software libraries.This interdisciplinary monograph is essential reading for students, researchers and professionals interested in solving optimization problems with polynomial input data.
The success of a genetic algorithm when applied to an optimization problem depends upon several features present or absent in the problem to be solved, including the quality of the encoding of data, the geometric structure of the search space, deception or epistasis. This book deals essentially with the latter notion, presenting, for the first time, a complete state-of-the-art of research on this notion, in a structured, completely self-contained and methodical way. In particular, it contains a refresher on the linear algebra used in the text as well as an elementary introductory chapter on genetic algorithms aimed at readers unacquainted with this notion. In this way, the monograph aims to serve a broad audience consisting of graduate and advanced undergraduate students in mathematics and computer science, as well as researchers working in the domains of optimization, artificial intelligence, theoretical computer science, combinatorics and evolutionary algorithms.
The Moment-SOS hierarchy is a powerful methodology that is used to solve the Generalized Moment Problem (GMP) where the list of applications in various areas of Science and Engineering is almost endless. Initially designed for solving polynomial optimization problems (the simplest example of the GMP), it applies to solving any instance of the GMP whose description only involves semi-algebraic functions and sets. It consists of solving a sequence (a hierarchy) of convex relaxations of the initial problem, and each convex relaxation is a semidefinite program whose size increases in the hierarchy.The goal of this book is to describe in a unified and detailed manner how this methodology applies to solving various problems in different areas ranging from Optimization, Probability, Statistics, Signal Processing, Computational Geometry, Control, Optimal Control and Analysis of a certain class of nonlinear PDEs. For each application, this unconventional methodology differs from traditional approaches and provides an unusual viewpoint. Each chapter is devoted to a particular application, where the methodology is thoroughly described and illustrated on some appropriate examples.The exposition is kept at an appropriate level of detail to aid the different levels of readers not necessarily familiar with these tools, to better know and understand this methodology.
This two volume set constitutes the refereed proceedings of the 14th EAI International Conference on Communications and Networking, ChinaCom 2019, held in November/December 2019 in Shanghai, China. The 81 papers presented were carefully selected from 162 submissions. The papers are organized in topical sections on Internet of Things (IoT), antenna, microwave and cellular communication, wireless communications and networking, network and information security, communication QoS, reliability and modeling, pattern recognition and image signal processing, and information processing.
Polynomial optimization is a fascinating field of study that has revolutionized the way we approach nonlinear problems described by polynomial constraints. The applications of this field range from production planning processes to transportation, energy consumption, and resource control. This introductory book explores the latest research developments in polynomial optimization, presenting the results of cutting-edge interdisciplinary work conducted by the European network POEMA. For the past four years, experts from various fields, including algebraists, geometers, computer scientists, and industrial actors, have collaborated in this network to create new methods that go beyond traditional paradigms of mathematical optimization. By exploiting new advances in algebra and convex geometry, these innovative approaches have resulted in significant scientific and technological advancements. This book aims to make these exciting developments accessible to a wider audience by gathering high-quality chapters on these hot topics. Aimed at both aspiring and established researchers, as well as industry professionals, this book will be an invaluable resource for anyone interested in polynomial optimization and its potential for real-world applications.