Download Free Generic Multi Agent Reinforcement Learning Approach For Flexible Job Shop Scheduling Book in PDF and EPUB Free Download. You can read online Generic Multi Agent Reinforcement Learning Approach For Flexible Job Shop Scheduling and write the review.

The production control of flexible manufacturing systems is a relevant component that must go along with the requirements of being flexible in terms of new product variants, new machine skills and reaction to unforeseen events during runtime. This work focuses on developing a reactive job-shop scheduling system for flexible and re-configurable manufacturing systems. Reinforcement Learning approaches are therefore investigated for the concept of multiple agents that control products including transportation and resource allocation.
The production control of flexible manufacturing systems is a relevant component that must go along with the requirements of being flexible in terms of new product variants, new machine skills and reaction to unforeseen events during runtime. This work focuses on developing a reactive job-shop scheduling system for flexible and re-configurable manufacturing systems. Reinforcement Learning approaches are therefore investigated for the concept of multiple agents that control products including transportation and resource allocation. About the author Schirin Bär researched at the RWTH-Aachen University at the Institute for Information Management in Mechanical Engineering (IMA) on the optimization of production control of flexible manufacturing systems using reinforcement learning. As operations manager and previously as an engineer, she developed and evaluated the research results based on real systems.
This volume constitutes the refereed proceedings of the Third International Conference on Optimization and Learning, OLA 2020, held in Cádiz, Spain, in February 2020. The 23 full papers were carefully reviewed and selected from 55 submissions. The papers presented in the volume focus on the future challenges of optimization and learning methods, identifying and exploiting their synergies,and analyzing their applications in different fields, such as health, industry 4.0, games, logistics, etc.
This book constitutes the refereed proceedings of the 6th International Workshop on Artificial Intelligence and Pattern Recognition, IWAIPR 2018, held in Havana, Cuba, in September 2018. The 42 full papers presented were carefully reviewed and selected from 101 submissions. The papers promote and disseminate ongoing research on mathematical methods and computing techniques for artificial intelligence and pattern recognition, in particular in bioinformatics, cognitive and humanoid vision, computer vision, image analysis and intelligent data analysis, as well as their application in a number of diverse areas such as industry, health, robotics, data mining, opinion mining and sentiment analysis, telecommunications, document analysis, and natural language processing and recognition.
Although the tenn quality does not have a precise and universally accepted definition, its meaning is generally well understood: quality is what makes the difference between success and failure in a competitive world. Given the importance of quality, there is a need for effective quality systems to ensure that the highest quality is achieved within given constraints on human, material or financial resources. This book discusses Intelligent Quality Systems, that is quality systems employing techniques from the field of Artificial Intelligence (AI). The book focuses on two popular AI techniques, expert or knowledge-based systems and neural networks. Expert systems encapsulate human expertise for solving difficult problems. Neural networks have the ability to learn problem solving from examples. The aim of the book is to illustrate applications of these techniques to the design and operation of effective quality systems. The book comprises 8 chapters. Chapter 1 provides an introduction to quality control and a general discussion of possible AI-based quality systems. Chapter 2 gives technical information on the key AI techniques of expert systems and neural networks. The use of these techniques, singly and in a combined hybrid fonn, to realise intelligent Statistical Process Control (SPC) systems for quality improvement is the subject of Chapters 3-5. Chapter 6 covers experimental design and the Taguchi method which is an effective technique for designing quality into a product or process. The application of expert systems and neural networks to facilitate experimental design is described in this chapter.
Full of practical examples, Introduction to Scheduling presents the basic concepts and methods, fundamental results, and recent developments of scheduling theory. With contributions from highly respected experts, it provides self-contained, easy-to-follow, yet rigorous presentations of the material.The book first classifies scheduling problems and
This book provides a theoretical and application-oriented analysis of deterministic scheduling problems in advanced planning and computer systems. The text examines scheduling problems across a range of parameters: job priority, release times, due dates, processing times, precedence constraints, resource usage and more, focusing on such topics as computer systems and supply chain management. Discussion includes single and parallel processors, flexible shops and manufacturing systems, and resource-constrained project scheduling. Many applications from industry and service operations management and case studies are described. The handbook will be useful to a broad audience, from researchers to practitioners, graduate and advanced undergraduate students.
Constraint Programming is a problem-solving paradigm that establishes a clear distinction between two pivotal aspects of a problem: (1) a precise definition of the constraints that define the problem to be solved and (2) the algorithms and heuristics enabling the selection of decisions to solve the problem. It is because of these capabilities that Constraint Programming is increasingly being employed as a problem-solving tool to solve scheduling problems. Hence the development of Constraint-Based Scheduling as a field of study. The aim of this book is to provide an overview of the most widely used Constraint-Based Scheduling techniques. Following the principles of Constraint Programming, the book consists of three distinct parts: The first chapter introduces the basic principles of Constraint Programming and provides a model of the constraints that are the most often encountered in scheduling problems. Chapters 2, 3, 4, and 5 are focused on the propagation of resource constraints, which usually are responsible for the "hardness" of the scheduling problem. Chapters 6, 7, and 8 are dedicated to the resolution of several scheduling problems. These examples illustrate the use and the practical efficiency of the constraint propagation methods of the previous chapters. They also show that besides constraint propagation, the exploration of the search space must be carefully designed, taking into account specific properties of the considered problem (e.g., dominance relations, symmetries, possible use of decomposition rules). Chapter 9 mentions various extensions of the model and presents promising research directions.
Intelligent Decision Support Systems have the potential to transform human decision making by combining research in artificial intelligence, information technology, and systems engineering. The field of intelligent decision making is expanding rapidly due, in part, to advances in artificial intelligence and network-centric environments that can deliver the technology. Communication and coordination between dispersed systems can deliver just-in-time information, real-time processing, collaborative environments, and globally up-to-date information to a human decision maker. At the same time, artificial intelligence techniques have demonstrated that they have matured sufficiently to provide computational assistance to humans in practical applications. This book includes contributions from leading researchers in the field beginning with the foundations of human decision making and the complexity of the human cognitive system. Researchers contrast human and artificial intelligence, survey computational intelligence, present pragmatic systems, and discuss future trends. This book will be an invaluable resource to anyone interested in the current state of knowledge and key research gaps in the rapidly developing field of intelligent decision support.
An overview of the rapidly growing field of ant colony optimization that describes theoretical findings, the major algorithms, and current applications. The complex social behaviors of ants have been much studied by science, and computer scientists are now finding that these behavior patterns can provide models for solving difficult combinatorial optimization problems. The attempt to develop algorithms inspired by one aspect of ant behavior, the ability to find what computer scientists would call shortest paths, has become the field of ant colony optimization (ACO), the most successful and widely recognized algorithmic technique based on ant behavior. This book presents an overview of this rapidly growing field, from its theoretical inception to practical applications, including descriptions of many available ACO algorithms and their uses. The book first describes the translation of observed ant behavior into working optimization algorithms. The ant colony metaheuristic is then introduced and viewed in the general context of combinatorial optimization. This is followed by a detailed description and guide to all major ACO algorithms and a report on current theoretical findings. The book surveys ACO applications now in use, including routing, assignment, scheduling, subset, machine learning, and bioinformatics problems. AntNet, an ACO algorithm designed for the network routing problem, is described in detail. The authors conclude by summarizing the progress in the field and outlining future research directions. Each chapter ends with bibliographic material, bullet points setting out important ideas covered in the chapter, and exercises. Ant Colony Optimization will be of interest to academic and industry researchers, graduate students, and practitioners who wish to learn how to implement ACO algorithms.