Download Free Generic Eis For Nuclear Power Plant Operating Licenses Renewal Book in PDF and EPUB Free Download. You can read online Generic Eis For Nuclear Power Plant Operating Licenses Renewal and write the review.

This publication is a revision by amendment of IAEA Safety Standards Series No. SSG-15 and provides recommendations and guidance on the storage of spent nuclear fuel. It covers all types of storage facility and all types of spent fuel from nuclear power plants and research reactors. It takes into consideration the longer storage periods beyond the original design lifetime of the storage facility that have become necessary owing to delays in the development of disposal facilities and the reduction in reprocessing activities. It also considers developments associated with nuclear fuel, such as higher enrichment, mixed oxide fuels and higher burnup. Guidance is provided on all stages in the lifetime of a spent fuel storage facility, from planning through siting and design to operation and decommissioning. The revision was undertaken by amending, adding and/or deleting specific paragraphs addressing recommendations and findings from studying the accident at the Fukushima Daiichi nuclear power plant in Japan.
Electricity, supplied reliably and affordably, is foundational to the U.S. economy and is utterly indispensable to modern society. However, emissions resulting from many forms of electricity generation create environmental risks that could have significant negative economic, security, and human health consequences. Large-scale installation of cleaner power generation has been generally hampered because greener technologies are more expensive than the technologies that currently produce most of our power. Rather than trade affordability and reliability for low emissions, is there a way to balance all three? The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies considers how to speed up innovations that would dramatically improve the performance and lower the cost of currently available technologies while also developing new advanced cleaner energy technologies. According to this report, there is an opportunity for the United States to continue to lead in the pursuit of increasingly clean, more efficient electricity through innovation in advanced technologies. The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies makes the case that America's advantagesâ€"world-class universities and national laboratories, a vibrant private sector, and innovative states, cities, and regions that are free to experiment with a variety of public policy approachesâ€"position the United States to create and lead a new clean energy revolution. This study focuses on five paths to accelerate the market adoption of increasing clean energy and efficiency technologies: (1) expanding the portfolio of cleaner energy technology options; (2) leveraging the advantages of energy efficiency; (3) facilitating the development of increasing clean technologies, including renewables, nuclear, and cleaner fossil; (4) improving the existing technologies, systems, and infrastructure; and (5) leveling the playing field for cleaner energy technologies. The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies is a call for leadership to transform the United States energy sector in order to both mitigate the risks of greenhouse gas and other pollutants and to spur future economic growth. This study's focus on science, technology, and economic policy makes it a valuable resource to guide support that produces innovation to meet energy challenges now and for the future.
When nuclear power plants reach the end of their nominal design life, they undergo a special safety review and an ageing assessment of their essential structures, systems and components for the purpose of validating or renewing their licence to operate for terms beyond the service period originally intended. Three different plant life management models have been used to qualify these nuclear power plants to operate beyond their original design life. This publication presents a collection of sample licensing practices for long term operation among IAEA Member States. The various plant life management models used to obtain long term operation authorizations are described and comparisons drawn against the standard periodic safety review model. Lessons learned and warnings about possible complications and pitfalls are also described to minimize the licensing risk during operation and future long term operation applications. The main intention of this publication is to support nuclear power plant owners and operators planning an extension of plant operation beyond its original design life, but it also serves as a useful guide for those interested in procuring, from the beginning, the necessary tools to implement ageing management in their future plant with long term operation in mind.
U.S. Nuclear Regulatory Commission (NRC) regulations allow for the renewal of commercial nuclear power plant operating licenses. To support the license renewal environmental review process, the NRC published the Generic Environmental Impact Statement for License Renewal of Nuclear Plants (GEIS) in 1996. The proposed action considered in the GEIS is the renewal of nuclear power plant operating licenses.