Download Free Generative Ai In Practice Book in PDF and EPUB Free Download. You can read online Generative Ai In Practice and write the review.

Cyber-solutions to real-world business problems Artificial Intelligence in Practice is a fascinating look into how companies use AI and machine learning to solve problems. Presenting 50 case studies of actual situations, this book demonstrates practical applications to issues faced by businesses around the globe. The rapidly evolving field of artificial intelligence has expanded beyond research labs and computer science departments and made its way into the mainstream business environment. Artificial intelligence and machine learning are cited as the most important modern business trends to drive success. It is used in areas ranging from banking and finance to social media and marketing. This technology continues to provide innovative solutions to businesses of all sizes, sectors and industries. This engaging and topical book explores a wide range of cases illustrating how businesses use AI to boost performance, drive efficiency, analyse market preferences and many others. Best-selling author and renowned AI expert Bernard Marr reveals how machine learning technology is transforming the way companies conduct business. This detailed examination provides an overview of each company, describes the specific problem and explains how AI facilitates resolution. Each case study provides a comprehensive overview, including some technical details as well as key learning summaries: Understand how specific business problems are addressed by innovative machine learning methods Explore how current artificial intelligence applications improve performance and increase efficiency in various situations Expand your knowledge of recent AI advancements in technology Gain insight on the future of AI and its increasing role in business and industry Artificial Intelligence in Practice: How 50 Successful Companies Used Artificial Intelligence to Solve Problems is an insightful and informative exploration of the transformative power of technology in 21st century commerce.
An indispensable look at the next frontier of technological advancement and its impact on our world Generative AI is rewriting the rulebook with its seemingly endless capabilities, from crafting intricate industrial designs, writing computer code, and producing mesmerizing synthetic voices to composing enchanting music and innovating genetic breakthroughs. In Generative AI in Practice, renowned futurist Bernard Marr offers readers a deep dive into the captivating universe of GenAI. This comprehensive guide introduces you to the basics of this groundbreaking technology and outlines the profound impact that GenAI will have on business and society. Professionals, technophiles, and anyone with an interest in the future will need to understand how GenAI is set to redefine jobs, revolutionize business, and question the foundations everything we do. In this book, Marr sheds light on the most innovative real-world GenAI applications through practical examples, describing how they are moulding industries like retail, healthcare, education, finance, and beyond. You'll enjoy a captivating discussion of innovations in media and entertainment, seismic shifts in advertising, and the future trajectory of GenAI. You will: Navigate the complex landscapes of risks and challenges posed by Generative AI Delve into the revolutionary transformation of the job market in the age of GenAI Understand AI's transformative impact on education, healthcare, and retail Explore the boundless potentials in media, design, banking, coding, and even the legal arena Ideal for professionals, technophiles, and anyone eager to understand the next big thing in technology, Generative AI In Practice will equip readers with insights on how to implement GenAI, how GenAI is different to traditional AI, and a comprehensive list of generative AI tools available today.
***BUSINESS BOOK AWARDS - FINALIST 2021*** Discover how 25 powerful technology trends are transforming 21st century businesses How will the latest technologies transform your business? Future Tech Trends in Practice will give you the knowledge of today’s most important technology trends, and how to take full advantage of them to grow your business. The book presents25 real-world technology trends along with their potential contributions to organisational success. You’ll learn how to integrate existing advancements and plan for those that are on the way. In this book, best-selling author, strategic business advisor, and respected futurist Bernard Marr explains the role of technology in providing innovative businesses solutions for companies of varying sizes and across different industries. He covers wide-ranging trends and provides an overview of how companies are using these new and emerging technologies in practice. You, too, can prepare your company for the potential and power of trending technology by examining these and other areas of innovation described in Future Tech Trends in Practice: Artificial intelligence, including machine and deep learning The Internet of Things and the rise of smart devices Self-driving cars and autonomous drones 3D printing and additive manufacturing Blockchain technology Genomics and gene editing Augmented, virtual and mixed reality When you understand the technology trends that are driving success, now and into the future, you’ll be better positioned to address and solve problems within your organisation.
More than half of the analytics and machine learning (ML) models created by organizations today never make it into production. Some of the challenges and barriers to operationalization are technical, but others are organizational. Either way, the bottom line is that models not in production can't provide business impact. This book introduces the key concepts of MLOps to help data scientists and application engineers not only operationalize ML models to drive real business change but also maintain and improve those models over time. Through lessons based on numerous MLOps applications around the world, nine experts in machine learning provide insights into the five steps of the model life cycle--Build, Preproduction, Deployment, Monitoring, and Governance--uncovering how robust MLOps processes can be infused throughout. This book helps you: Fulfill data science value by reducing friction throughout ML pipelines and workflows Refine ML models through retraining, periodic tuning, and complete remodeling to ensure long-term accuracy Design the MLOps life cycle to minimize organizational risks with models that are unbiased, fair, and explainable Operationalize ML models for pipeline deployment and for external business systems that are more complex and less standardized
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data
Cutting through the hype, a practical guide to using artificial intelligence for business benefits and competitive advantage. In The AI Advantage, Thomas Davenport offers a guide to using artificial intelligence in business. He describes what technologies are available and how companies can use them for business benefits and competitive advantage. He cuts through the hype of the AI craze—remember when it seemed plausible that IBM's Watson could cure cancer?—to explain how businesses can put artificial intelligence to work now, in the real world. His key recommendation: don't go for the “moonshot” (curing cancer, or synthesizing all investment knowledge); look for the “low-hanging fruit” to make your company more efficient. Davenport explains that the business value AI offers is solid rather than sexy or splashy. AI will improve products and processes and make decisions better informed—important but largely invisible tasks. AI technologies won't replace human workers but augment their capabilities, with smart machines to work alongside smart people. AI can automate structured and repetitive work; provide extensive analysis of data through machine learning (“analytics on steroids”), and engage with customers and employees via chatbots and intelligent agents. Companies should experiment with these technologies and develop their own expertise. Davenport describes the major AI technologies and explains how they are being used, reports on the AI work done by large commercial enterprises like Amazon and Google, and outlines strategies and steps to becoming a cognitive corporation. This book provides an invaluable guide to the real-world future of business AI. A book in the Management on the Cutting Edge series, published in cooperation with MIT Sloan Management Review.
Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala
Discover how artificial intelligence can improve how your organization practices law with this compelling resource from the creators of one of the world’s leading legal AI platforms. AI for Lawyers: How Artificial Intelligence is Adding Value, Amplifying Expertise, and Transforming Careers explains how artificial intelligence can be used to revolutionize your organization’s operations. Noah Waisberg and Dr. Alexander Hudek, a lawyer and a computer science Ph.D. who lead prominent legal AI business Kira Systems, have written an approachable and insightful book that will help you transform how your firm functions. AI for Lawyers explains how artificial intelligence can help your law firm: Win more business and find more clients Better meet and exceed client expectations Find hidden efficiencies Better manage and eliminate risk Increase associate and partner engagement Whether focusing on small or big law, AI for Lawyers is perfect for any lawyer who either feels uneasy about how AI might change law or is looking to capitalize on the evolving practice. With contributions from experts in the fields of e-Discovery, legal research, expert systems, and litigation analytics, it also belongs on the bookshelf of anyone who’s interested in the intersection of law and technology.
BRONZE RUNNER UP: Axiom Awards 2018 - Business Technology Category Less than 0.5 per cent of all data is currently analyzed and used. However, business leaders and managers cannot afford to be unconcerned or sceptical about data. Data is revolutionizing the way we work and it is the companies that view data as a strategic asset that will survive and thrive. Data Strategy is a must-have guide to creating a robust data strategy. Explaining how to identify your strategic data needs, what methods to use to collect the data and, most importantly, how to translate your data into organizational insights for improved business decision-making and performance, this is essential reading for anyone aiming to leverage the value of their business data and gain competitive advantage. Packed with case studies and real-world examples, advice on how to build data competencies in an organization and crucial coverage of how to ensure your data doesn't become a liability, Data Strategy will equip any organization with the tools and strategies it needs to profit from Big Data, analytics and the Internet of Things (IoT).
The rapid advancement of generative artificial intelligence (AI) has brought about significant ethical challenges. As machines become more adept at creating human-like content, concerns about misuse, bias, privacy, and accountability have emerged. Without clear guidelines and regulations, there is a risk of unethical use, such as creating deepfake videos or disseminating misinformation, which could have severe societal consequences. Additionally, questions about intellectual property rights and the ownership of AI-generated creations still need to be solved, further complicating the ethical landscape. The book, Generative Artificial Intelligence and Ethics: Standards, Guidelines, and Best Practices, comprehensively solves these ethical challenges. By providing insights into the historical development and key milestones of Generative AI, the book lays a foundation for understanding its complex ethical implications. It examines existing ethical frameworks and proposes new ones tailored to AI's unique characteristics, helping readers apply traditional ethics to AI development and deployment.