Download Free Generating Referring Expressions Book in PDF and EPUB Free Download. You can read online Generating Referring Expressions and write the review.

Robert Dale presents a detailed description of the development of algorithms for the generation of referring expressions, and of the underlying structures that motivate these algorithms, in a dynamic domain. He provides a number of novel results in both knowledge representation and natural language generation that should have straightforward applications in other domains. Dale describes EPICURE, a natural language generating system, and its capacity to create referring expressions in a domain embodying several interesting features: The entities in the domain consist of masses and sets as well as the more usual singular individuals; during the development of a discourse, the entities may take on new properties, existing entities may be destroyed, and new entities may be created; and the discourses within which the entities appear are hierarchically structured, allowing for the integration of discourse-structural constraints on the use of anaphoric expressions. EPICURE is designed to generate text from underlying plans. Dale uses cooking recipes as examples, showing how the system must determine what level of explanation is required and how the events in the plan must be modeled to ensure that the references generated are accurate.
Reference production, often termed Referring Expression Generation (REG) in computational linguistics, encompasses two distinct tasks: (1) one-shot REG, and (2) REG-in-context. One-shot REG explores which properties of a referent offer a unique description of it. In contrast, REG-in-context asks which (anaphoric) referring expressions are optimal at various points in discourse. This book offers a series of in-depth studies of the REG-in-context task. It thoroughly explores various aspects of the task such as corpus selection, computational methods, feature analysis, and evaluation techniques. The comparative study of different corpora highlights the pivotal role of corpus choice in REG-in-context research, emphasizing its influence on all subsequent model development steps. An experimental analysis of various feature-based machine learning models reveals that those with a concise set of linguistically-informed features can rival models with more features. Furthermore, this work highlights the importance of paragraph-related concepts, an area underexplored in Natural Language Generation (NLG). The book offers a thorough evaluation of different approaches to the REG-in-context task (rule-based, feature-based, and neural end-to-end), and demonstrates that well-crafted, non-neural models are capable of matching or surpassing the performance of neural REG-in-context models. In addition, the book delves into post-hoc experiments, aimed at improving the explainability of both neural and classical REG-in-context models. It also addresses other critical topics, such as the limitations of accuracy-based evaluation metrics and the essential role of human evaluation in NLG research. These studies collectively advance our understanding of REG-in-context. They highlight the importance of selecting appropriate corpora and targeted features. They show the need for context-aware modeling and the value of a comprehensive approach to model evaluation and interpretation. This detailed analysis of REG-in-context paves the way for developing more sophisticated, linguistically-informed, and contextually appropriate NLG systems.
This book offers the first comprehensive yet critical overview of methods used to evaluate interaction between humans and social robots. It reviews commonly used evaluation methods, and shows that they are not always suitable for this purpose. Using representative case studies, the book identifies good and bad practices for evaluating human-robot interactions and proposes new standardized processes as well as recommendations, carefully developed on the basis of intensive discussions between specialists in various HRI-related disciplines, e.g. psychology, ethology, ergonomics, sociology, ethnography, robotics, and computer science. The book is the result of a close, long-standing collaboration between the editors and the invited contributors, including, but not limited to, their inspiring discussions at the workshop on Evaluation Methods Standardization for Human-Robot Interaction (EMSHRI), which have been organized yearly since 2015. By highlighting and weighing good and bad practices in evaluation design for HRI, the book will stimulate the scientific community to search for better solutions, take advantages of interdisciplinary collaborations, and encourage the development of new standards to accommodate the growing presence of robots in the day-to-day and social lives of human beings.
A relevance-theoretic account of reference, with a focus on its role in creating stylistic, attitudinal and emotional effects.
This book introduces the concept of information sharing as an area of cognitive science, defining it as the process by which speakers depend on "given" information to convey "new" information--an idea crucial to language engineering. Where previous work in information sharing was often fragmented between different disciplines, this volume brings together theoretical and applied work, and joins computational contributions with papers based on analyses of language corpora and on psycholinguistic experimentation.
The eight-volume set comprising LNCS volumes 9905-9912 constitutes the refereed proceedings of the 14th European Conference on Computer Vision, ECCV 2016, held in Amsterdam, The Netherlands, in October 2016. The 415 revised papers presented were carefully reviewed and selected from 1480 submissions. The papers cover all aspects of computer vision and pattern recognition such as 3D computer vision; computational photography, sensing and display; face and gesture; low-level vision and image processing; motion and tracking; optimization methods; physicsbased vision, photometry and shape-from-X; recognition: detection, categorization, indexing, matching; segmentation, grouping and shape representation; statistical methods and learning; video: events, activities and surveillance; applications. They are organized in topical sections on detection, recognition and retrieval; scene understanding; optimization; image and video processing; learning; action activity and tracking; 3D; and 9 poster sessions.
This is the first textbook on attribute exploration, its theory, its algorithms forapplications, and some of its many possible generalizations. Attribute explorationis useful for acquiring structured knowledge through an interactive process, byasking queries to an expert. Generalizations that handle incomplete, faulty, orimprecise data are discussed, but the focus lies on knowledge extraction from areliable information source.The method is based on Formal Concept Analysis, a mathematical theory ofconcepts and concept hierarchies, and uses its expressive diagrams. The presentationis self-contained. It provides an introduction to Formal Concept Analysiswith emphasis on its ability to derive algebraic structures from qualitative data,which can be represented in meaningful and precise graphics.
This book provides an in-depth view of the current issues, problems and approaches in the computation of meaning as expressed in language. Aimed at linguists, computer scientists, and logicians with an interest in the computation of meaning, this book focuses on two main topics in recent research in computational semantics. The first topic is the definition and use of underspecified semantic representations, i.e. formal structures that represent part of the meaning of a linguistic object while leaving other parts unspecified. The second topic discussed is semantic annotation. Annotated corpora have become an indispensable resource both for linguists and for developers of language and speech technology, especially when used in combination with machine learning methods. The annotation in corpora has only marginally addressed semantic information, however, since semantic annotation methodologies are still in their infancy. This book discusses the development and application of such methodologies.
Natural language generation (NLG) is a subfield of natural language processing (NLP) that is often characterized as the study of automatically converting non-linguistic representations (e.g., from databases or other knowledge sources) into coherent natural language text. In recent years the field has evolved substantially. Perhaps the most important new development is the current emphasis on data-oriented methods and empirical evaluation. Progress in related areas such as machine translation, dialogue system design and automatic text summarization and the resulting awareness of the importance of language generation, the increasing availability of suitable corpora in recent years, and the organization of shared tasks for NLG, where different teams of researchers develop and evaluate their algorithms on a shared, held out data set have had a considerable impact on the field, and this book offers the first comprehensive overview of recent empirically oriented NLG research.
The Third International Conference on Natural Language Generation (INLG 2004) was held from 14th to 16th July 2004 at Careys Manor, Brockenhurst, UK. Supported by the Association for Computational Linguistics Special - terest Group on Generation, the conference continued a twenty-year tradition of biennial international meetings on research into natural language generation. Recent conference venues have included Mitzpe Ramon, Israel (INLG 2000) and New York, USA (INLG 2002). It was our pleasure to invite the thriving and friendly NLG research community to the beautiful New Forest in the south of England for INLG 2004. INLG is the leading international conference in the ?eld of natural language generation. It provides a forum for the presentation and discussion of original research on all aspects of the generation of language, including psychological modelling of human language production as well as computational approaches to the automatic generation of language. This volume includes a paper by the keynote speaker, Ardi Roelofs of the Max Planck Institute for Psycholingu- tics and the F. C. Donders Centre for CognitiveNeuroimaging,18 regular papers reportingthelatestresearchresultsanddirections,and4studentpapersdescr- ing doctoral work in progress. These papers reveal a particular concentration of current research e?ort on statistical and machine learning methods, on referring expressions, and on variation in surface realisation. The papers were selected from 46 submissions from all over the world (27 from Europe, 13 from North America, 6 from elsewhere), which were subjected to a rigorous double-blind reviewing process undertaken by our hard-working programme committee.