Download Free Generalized Poisson Models And Their Applications In Insurance And Finance Book in PDF and EPUB Free Download. You can read online Generalized Poisson Models And Their Applications In Insurance And Finance and write the review.

The series is devoted to the publication of high-level monographs and surveys which cover the whole spectrum of probability and statistics. The books of the series are addressed to both experts and advanced students.
The aim of this Special Issue of Mathematics is to commemorate the outstanding Russian mathematician Vladimir Zolotarev, whose 90th birthday will be celebrated on February 27th, 2021. The present Special Issue contains a collection of new papers by participants in sessions of the International Seminar on Stability Problems for Stochastic Models founded by Zolotarev. Along with research in probability distributions theory, limit theorems of probability theory, stochastic processes, mathematical statistics, and queuing theory, this collection contains papers dealing with applications of stochastic models in modeling of pension schemes, modeling of extreme precipitation, construction of statistical indicators of scientific publication importance, and other fields.
Backward stochastic differential equations with jumps can be used to solve problems in both finance and insurance. Part I of this book presents the theory of BSDEs with Lipschitz generators driven by a Brownian motion and a compensated random measure, with an emphasis on those generated by step processes and Lévy processes. It discusses key results and techniques (including numerical algorithms) for BSDEs with jumps and studies filtration-consistent nonlinear expectations and g-expectations. Part I also focuses on the mathematical tools and proofs which are crucial for understanding the theory. Part II investigates actuarial and financial applications of BSDEs with jumps. It considers a general financial and insurance model and deals with pricing and hedging of insurance equity-linked claims and asset-liability management problems. It additionally investigates perfect hedging, superhedging, quadratic optimization, utility maximization, indifference pricing, ambiguity risk minimization, no-good-deal pricing and dynamic risk measures. Part III presents some other useful classes of BSDEs and their applications. This book will make BSDEs more accessible to those who are interested in applying these equations to actuarial and financial problems. It will be beneficial to students and researchers in mathematical finance, risk measures, portfolio optimization as well as actuarial practitioners.
This book is a compilation of 21 papers presented at the International Cramér Symposium on Insurance Mathematics (ICSIM) held at Stockholm University in June, 2013. The book comprises selected contributions from several large research communities in modern insurance mathematics and its applications. The main topics represented in the book are modern risk theory and its applications, stochastic modelling of insurance business, new mathematical problems in life and non-life insurance and related topics in applied and financial mathematics. The book is an original and useful source of inspiration and essential reference for a broad spectrum of theoretical and applied researchers, research students and experts from the insurance business. In this way, Modern Problems in Insurance Mathematics will contribute to the development of research and academy–industry co-operation in the area of insurance mathematics and its applications.
This book provides the most comprehensive treatment of the theoretical concepts and modelling techniques of quantitative risk management. Whether you are a financial risk analyst, actuary, regulator or student of quantitative finance, Quantitative Risk Management gives you the practical tools you need to solve real-world problems. Describing the latest advances in the field, Quantitative Risk Management covers the methods for market, credit and operational risk modelling. It places standard industry approaches on a more formal footing and explores key concepts such as loss distributions, risk measures and risk aggregation and allocation principles. The book's methodology draws on diverse quantitative disciplines, from mathematical finance and statistics to econometrics and actuarial mathematics. A primary theme throughout is the need to satisfactorily address extreme outcomes and the dependence of key risk drivers. Proven in the classroom, the book also covers advanced topics like credit derivatives. Fully revised and expanded to reflect developments in the field since the financial crisis Features shorter chapters to facilitate teaching and learning Provides enhanced coverage of Solvency II and insurance risk management and extended treatment of credit risk, including counterparty credit risk and CDO pricing Includes a new chapter on market risk and new material on risk measures and risk aggregation
This is the only book actuaries need to understand generalized linear models (GLMs) for insurance applications. GLMs are used in the insurance industry to support critical decisions. Until now, no text has introduced GLMs in this context or addressed the problems specific to insurance data. Using insurance data sets, this practical, rigorous book treats GLMs, covers all standard exponential family distributions, extends the methodology to correlated data structures, and discusses recent developments which go beyond the GLM. The issues in the book are specific to insurance data, such as model selection in the presence of large data sets and the handling of varying exposure times. Exercises and data-based practicals help readers to consolidate their skills, with solutions and data sets given on the companion website. Although the book is package-independent, SAS code and output examples feature in an appendix and on the website. In addition, R code and output for all the examples are provided on the website.
The book gives a systematical presentation of stochastic approximation methods for models of American-type options with general pay-off functions for discrete time Markov price processes. Advanced methods combining backward recurrence algorithms for computing of option rewards and general results on convergence of stochastic space skeleton and tree approximations for option rewards are applied to a variety of models of multivariate modulated Markov price processes. The principal novelty of presented results is based on consideration of multivariate modulated Markov price processes and general pay-off functions, which can depend not only on price but also an additional stochastic modulating index component, and use of minimal conditions of smoothness for transition probabilities and pay-off functions, compactness conditions for log-price processes and rate of growth conditions for pay-off functions. The book also contains an extended bibliography of works in the area. This book is the first volume of the comprehensive two volumes monograph. The second volume will present results on structural studies of optimal stopping domains, Monte Carlo based approximation reward algorithms, and convergence of American-type options for autoregressive and continuous time models, as well as results of the corresponding experimental studies.
A scientific and educational journal not only for professional statisticians but also for economists, business executives, research directors, government officials, university professors, and others who are seriously interested in the application of statistical methods to practical problems, in the development of more useful methods, and in the improvement of basic statistical data.
This book presents statistical methods for the analysis of events. The primary focus is on single equation cross section models. The book addresses both the methodology and the practice of the subject and it provides both a synthesis of a diverse body of literature that hitherto was available largely in pieces, as well as a contribution to the progress of the methodology, establishing several new results and introducing new models. Starting from the standard Poisson regression model as a benchmark, the causes, symptoms and consequences of misspecification are worked out. Both parametric and semi-parametric alternatives are discussed. While semi-parametric models allow for robust interference, parametric models can identify features of the underlying data generation process.