Download Free Generalized Method Of Moments Estimation Book in PDF and EPUB Free Download. You can read online Generalized Method Of Moments Estimation and write the review.

The generalized method of moments (GMM) estimation has emerged as providing a ready to use, flexible tool of application to a large number of econometric and economic models by relying on mild, plausible assumptions. The principal objective of this volume is to offer a complete presentation of the theory of GMM estimation as well as insights into the use of these methods in empirical studies. It is also designed to serve as a unified framework for teaching estimation theory in econometrics. Contributors to the volume include well-known authorities in the field based in North America, the UK/Europe, and Australia. The work is likely to become a standard reference for graduate students and professionals in economics, statistics, financial modeling, and applied mathematics.
Generalized Method of Moments (GMM) has become one of the main statistical tools for the analysis of economic and financial data. This book is the first to provide an intuitive introduction to the method combined with a unified treatment of GMM statistical theory and a survey of recentimportant developments in the field. Providing a comprehensive treatment of GMM estimation and inference, it is designed as a resource for both the theory and practice of GMM: it discusses and proves formally all the main statistical results, and illustrates all inference techniques using empiricalexamples in macroeconomics and finance.Building from the instrumental variables estimator in static linear models, it presents the asymptotic statistical theory of GMM in nonlinear dynamic models. Within this framework it covers classical results on estimation and inference techniques, such as the overidentifying restrictions test andtests of structural stability, and reviews the finite sample performance of these inference methods. And it discusses in detail recent developments on covariance matrix estimation, the impact of model misspecification, moment selection, the use of the bootstrap, and weak instrumentasymptotics.
Specially selected from The New Palgrave Dictionary of Economics 2nd edition, each article within this compendium covers the fundamental themes within the discipline and is written by a leading practitioner in the field. A handy reference tool.
Generalized estimating equations have become increasingly popular in biometrical, econometrical, and psychometrical applications because they overcome the classical assumptions of statistics, i.e. independence and normality, which are too restrictive for many problems. Therefore, the main goal of this book is to give a systematic presentation of the original generalized estimating equations (GEE) and some of its further developments. Subsequently, the emphasis is put on the unification of various GEE approaches. This is done by the use of two different estimation techniques, the pseudo maximum likelihood (PML) method and the generalized method of moments (GMM). The author details the statistical foundation of the GEE approach using more general estimation techniques. The book could therefore be used as basis for a course to graduate students in statistics, biostatistics, or econometrics, and will be useful to practitioners in the same fields.
This volume presents advanced techniques to modeling markets, with a wide spectrum of topics, including advanced individual demand models, time series analysis, state space models, spatial models, structural models, mediation, models that specify competition and diffusion models. It is intended as a follow-on and companion to Modeling Markets (2015), in which the authors presented the basics of modeling markets along the classical steps of the model building process: specification, data collection, estimation, validation and implementation. This volume builds on the concepts presented in Modeling Markets with an emphasis on advanced methods that are used to specify, estimate and validate marketing models, including structural equation models, partial least squares, mixture models, and hidden Markov models, as well as generalized methods of moments, Bayesian analysis, non/semi-parametric estimation and endogeneity issues. Specific attention is given to big data. The market environment is changing rapidly and constantly. Models that provide information about the sensitivity of market behavior to marketing activities such as advertising, pricing, promotions and distribution are now routinely used by managers for the identification of changes in marketing programs that can improve brand performance. In today’s environment of information overload, the challenge is to make sense of the data that is being provided globally, in real time, from thousands of sources. Although marketing models are now widely accepted, the quality of the marketing decisions is critically dependent upon the quality of the models on which those decisions are based. This volume provides an authoritative and comprehensive review, with each chapter including: · an introduction to the method/methodology · a numerical example/application in marketing · references to other marketing applications · suggestions about software. Featuring contributions from top authors in the field, this volume will explore current and future aspects of modeling markets, providing relevant and timely research and techniques to scientists, researchers, students, academics and practitioners in marketing, management and economics.
"Maximum likelihood estimation is a general method for estimating the parameters of econometric models from observed data. The principle of maximum likelihood plays a central role in the exposition of this book, since a number of estimators used in econometrics can be derived within this framework. Examples include ordinary least squares, generalized least squares and full-information maximum likelihood. In deriving the maximum likelihood estimator, a key concept is the joint probability density function (pdf) of the observed random variables, yt. Maximum likelihood estimation requires that the following conditions are satisfied. (1) The form of the joint pdf of yt is known. (2) The specification of the moments of the joint pdf are known. (3) The joint pdf can be evaluated for all values of the parameters, 9. Parts ONE and TWO of this book deal with models in which all these conditions are satisfied. Part THREE investigates models in which these conditions are not satisfied and considers four important cases. First, if the distribution of yt is misspecified, resulting in both conditions 1 and 2 being violated, estimation is by quasi-maximum likelihood (Chapter 9). Second, if condition 1 is not satisfied, a generalized method of moments estimator (Chapter 10) is required. Third, if condition 2 is not satisfied, estimation relies on nonparametric methods (Chapter 11). Fourth, if condition 3 is violated, simulation-based estimation methods are used (Chapter 12). 1.2 Motivating Examples To highlight the role of probability distributions in maximum likelihood estimation, this section emphasizes the link between observed sample data and 4 The Maximum Likelihood Principle the probability distribution from which they are drawn"-- publisher.
This work has been selected by scholars as being culturally important and is part of the knowledge base of civilization as we know it. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. To ensure a quality reading experience, this work has been proofread and republished using a format that seamlessly blends the original graphical elements with text in an easy-to-read typeface. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
The second edition of a comprehensive state-of-the-art graduate level text on microeconometric methods, substantially revised and updated. The second edition of this acclaimed graduate text provides a unified treatment of two methods used in contemporary econometric research, cross section and data panel methods. By focusing on assumptions that can be given behavioral content, the book maintains an appropriate level of rigor while emphasizing intuitive thinking. The analysis covers both linear and nonlinear models, including models with dynamics and/or individual heterogeneity. In addition to general estimation frameworks (particular methods of moments and maximum likelihood), specific linear and nonlinear methods are covered in detail, including probit and logit models and their multivariate, Tobit models, models for count data, censored and missing data schemes, causal (or treatment) effects, and duration analysis. Econometric Analysis of Cross Section and Panel Data was the first graduate econometrics text to focus on microeconomic data structures, allowing assumptions to be separated into population and sampling assumptions. This second edition has been substantially updated and revised. Improvements include a broader class of models for missing data problems; more detailed treatment of cluster problems, an important topic for empirical researchers; expanded discussion of "generalized instrumental variables" (GIV) estimation; new coverage (based on the author's own recent research) of inverse probability weighting; a more complete framework for estimating treatment effects with panel data, and a firmly established link between econometric approaches to nonlinear panel data and the "generalized estimating equation" literature popular in statistics and other fields. New attention is given to explaining when particular econometric methods can be applied; the goal is not only to tell readers what does work, but why certain "obvious" procedures do not. The numerous included exercises, both theoretical and computer-based, allow the reader to extend methods covered in the text and discover new insights.
This volume presents the published proceedings of the lOth International Workshop on Statistical Modelling, to be held in Innsbruck, Austria from 10 to 14 July, 1995. This workshop marks an important anniversary. The inaugural workshop in this series also took place in Innsbruck in 1986, and brought together a small but enthusiastic group of thirty European statisticians interested in statistical modelling. The workshop arose out of two G LIM conferences in the U. K. in London (1982) and Lancaster (1985), and from a num ber of short courses organised by Murray Aitkin and held at Lancaster in the early 1980s, which attracted many European statisticians interested in Generalised Linear Modelling. The inaugural workshop in Innsbruck con centrated on GLMs and was characterised by a number of features - a friendly and supportive academic atmosphere, tutorial sessions and invited speakers presenting new developments in statistical modelling, and a very well organised social programme. The academic programme allowed plenty of time for presentation and for discussion, and made available copies of all papers beforehand. Over the intervening years, the workshop has grown substantially, and now regularly attracts over 150 participants. The scope of the workshop is now much broader, reflecting the growth in the subject of statistical modelling over ten years. The elements ofthe first workshop, however, are still present, and participants always find the meetings relevant and stimulating.