Download Free Generalized Bessel Functions Of The First Kind Book in PDF and EPUB Free Download. You can read online Generalized Bessel Functions Of The First Kind and write the review.

This volume studies the generalized Bessel functions of the first kind by using a number of classical and new findings in complex and classical analysis. It presents interesting geometric properties and functional inequalities for these generalized functions.
An extensive summary of mathematical functions that occur in physical and engineering problems
Self-contained text, useful for classroom or independent study, covers Bessel functions of zero order, modified Bessel functions, definite integrals, asymptotic expansions, and Bessel functions of any real order. 226 problems.
Bessel functions are associated with a wide range of problems in important areas of mathematical physics. Bessel function theory is applied to problems of acoustics, radio physics, hydrodynamics, and atomic and nuclear physics. Bessel Functions and Their Applications consists of two parts. In Part One, the author presents a clear and rigorous intro
The various types of special functions have become essential tools for scientists and engineers. One of the important classes of special functions is of the hypergeometric type. It includes all classical hypergeometric functions such as the well-known Gaussian hypergeometric functions, the Bessel, Macdonald, Legendre, Whittaker, Kummer, Tricomi and Wright functions, the generalized hypergeometric functions ?Fq, Meijer's G-function, Fox's H-function, etc.Application of the new special functions allows one to increase considerably the number of problems whose solutions are found in a closed form, to examine these solutions, and to investigate the relationships between different classes of the special functions.This book deals with the theory and applications of generalized associated Legendre functions of the first and the second kind, Pm, n?(z) and Qm, n?(z), which are important representatives of the hypergeometric functions. They occur as generalizations of classical Legendre functions of the first and the second kind respectively. The authors use various methods of contour integration to obtain important properties of the generalized associated Legnedre functions as their series representations, asymptotic formulas in a neighborhood of singular points, zero properties, connection with Jacobi functions, Bessel functions, elliptic integrals and incomplete beta functions.The book also presents the theory of factorization and composition structure of integral operators associated with the generalized associated Legendre function, the fractional integro-differential properties of the functions Pm, n?(z) and Qm, n?(z), the classes of dual and triple integral equations associated with the function Pm, n-1/2+i?(chà) etc.
Physics, chemistry, and engineering undergraduates will benefit from this straightforward guide to special functions. Its topics possess wide applications in quantum mechanics, electrical engineering, and many other fields. 1968 edition. Includes 25 figures.
Famous Russian work discusses the application of cylinder functions and spherical harmonics; gamma function; probability integral and related functions; Airy functions; hyper-geometric functions; more. Translated by Richard Silverman.
This book is devoted to the study of certain integral representations for Neumann, Kapteyn, Schlömilch, Dini and Fourier series of Bessel and other special functions, such as Struve and von Lommel functions. The aim is also to find the coefficients of the Neumann and Kapteyn series, as well as closed-form expressions and summation formulas for the series of Bessel functions considered. Some integral representations are deduced using techniques from the theory of differential equations. The text is aimed at a mathematical audience, including graduate students and those in the scientific community who are interested in a new perspective on Fourier–Bessel series, and their manifold and polyvalent applications, mainly in general classical analysis, applied mathematics and mathematical physics.
Singular Differential Equations and Special Functions is the fifth book within Ordinary Differential Equations with Applications to Trajectories and Vibrations, Six-volume Set. As a set they are the fourth volume in the series Mathematics and Physics Applied to Science and Technology. This fifth book consists of one chapter (chapter 9 of the set). The chapter starts with general classes of differential equations and simultaneous systems for which the properties of the solutions can be established 'a priori', such as existence and unicity of solution, robustness and uniformity with regard to changes in boundary conditions and parameters, and stability and asymptotic behavior. The book proceeds to consider the most important class of linear differential equations with variable coefficients, that can be analytic functions or have regular or irregular singularities. The solution of singular differential equations by means of (i) power series; (ii) parametric integral transforms; and (iii) continued fractions lead to more than 20 special functions; among these is given greater attention to generalized circular, hyperbolic, Airy, Bessel and hypergeometric differential equations, and the special functions that specify their solutions. Includes existence, unicity, robustness, uniformity, and other theorems for non-linear differential equations Discusses properties of dynamical systems derived from the differential equations describing them, using methods such as Liapunov functions Includes linear differential equations with periodic coefficients, including Floquet theory, Hill infinite determinants and multiple parametric resonance Details theory of the generalized Bessel differential equation, and of the generalized, Gaussian, confluent and extended hypergeometric functions and relations with other 20 special functions Examines Linear Differential Equations with analytic coefficients or regular or irregular singularities, and solutions via power series, parametric integral transforms, and continued fractions