Download Free General Systems Theory Mathematical Foundations Book in PDF and EPUB Free Download. You can read online General Systems Theory Mathematical Foundations and write the review.

In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; andmethods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory.As a result, the book represents a blend of new methods in general computational analysis,and specific, but also generic, techniques for study of systems theory ant its particularbranches, such as optimal filtering and information compression.- Best operator approximation,- Non-Lagrange interpolation,- Generic Karhunen-Loeve transform- Generalised low-rank matrix approximation- Optimal data compression- Optimal nonlinear filtering
The classic book on a major modern theory
As suggested by the title of this book, I will present a collection of coherently related applications and a theoretical development of a general systems theory. Hopefully, this book will invite all readers to sample an exciting and challenging (even fun!) piece of interdisciplinary research, that has characterized the scientific and technological achievements of the twentieth century. And, I hope that many of them will be motivated to do additional reading and to contribute to topics along the lines described in the following pages. Since the applications in this volume range through many scientific disciplines, from sociology to atomic physics, from Einstein’s relativity theory to Dirac’s quan tum mechanics, from optimization theory to unreasonable effectiveness of mathe matics to foundations of mathematical modeling, from general systems theory to Schwartz’s distributions, special care has been given to write each application in a language appropriate to that field. That is, mathematical symbols and abstractions are used at different levels so that readers in various fields will find it possible to read. Also, because of the wide range of applications, each chapter has been written so that, in general, there is no need to reference a different chapter in order to understand a specific application. At the same time, if a reader has the desire to go through the entire book without skipping any chapter, it is strongly suggested to refer back to Chapters 2 and 3 as often as possible.
Graduate-level study approaches mathematical foundations of three-dimensional elasticity using modern differential geometry and functional analysis. It presents a classical subject in a modern setting, with examples of newer mathematical contributions. 1983 edition.
The central topic of this book is the mathematical analysis of social systems, understood in the following rather classical way: social systems consist of social actors who interact according to specific rules of interactions; the dynamics of social systems is then the consequences of these interactions, viz., the self-organization of social systems. According to particular demands of their environment, social systems are able to behave in an adaptive manner, that is they can change their rules of interaction by certain meta rules and thus generate a meta dynamics. It is possible to model and analyse mathematically both dynamics and meta dynamics, using cellular automata and genetic algorithms. These tools allow social systems theory to be carried through as precisely as the theories of natural systems, a feat that has not previously been possible. Readership: Researchers and graduate students in the fields of theoretical sociology and social and general systems theory and other interested scientists. No specialised knowledge of mathematics and/or computer science is required.
Inverse problems are of interest and importance across many branches of physics, mathematics, engineering and medical imaging. In this text, the foundations of imaging and wavefield inversion are presented in a clear and systematic way. The necessary theory is gradually developed throughout the book, progressing from simple wave equation based models to vector wave models. By combining theory with numerous MATLAB based examples, the author promotes a complete understanding of the material and establishes a basis for real world applications. Key topics of discussion include the derivation of solutions to the inhomogeneous and homogeneous Helmholtz equations using Green function techniques; the propagation and scattering of waves in homogeneous and inhomogeneous backgrounds; and the concept of field time reversal. Bridging the gap between mathematics and physics, this multidisciplinary book will appeal to graduate students and researchers alike. Additional resources including MATLAB codes and solutions are available online at www.cambridge.org/9780521119740.
This book demonstrates the theoretical value and practical significance of systems science and its logic of thinking by presenting a rigorously developed foundation—a tool for intuitive reasoning, which is supported by both theory and empirical evidence, as well as practical applications in business decision making. Following a foundation of general systems theory, the book presents an applied method to intuitively learn system-sciences fundamentals. The third and final part examines applications of the yoyo model and the theoretical results developed earlier within the context of problems facing business decision makers by organically combining methods of traditional science, the first dimension of science, with those of systems science, the second dimension, as argued by George Klir in the 1990s. This text would benefit graduate students, researchers, or practitioners in the areas of mathematics, systems science or engineering, economics, and business decision science.
A revolutionary book that for the first time provided a rigorous mathematical framework for quantum mechanics. -- Google books
In a mathematically precise manner, this book presents a unified introduction to deterministic control theory. It includes material on the realization of both linear and nonlinear systems, impulsive control, and positive linear systems.