Download Free General Relativity Cosmology And Astrophysics Book in PDF and EPUB Free Download. You can read online General Relativity Cosmology And Astrophysics and write the review.

For about half a century the general theory of relativity attracted little attention from physicists. However, the discovery of compact objects such as quasars and pulsars, as well as candidates for black holes on the one hand, and the microwave background radiation on the other hand completely changed the picture. In addition, developments in elementary particle physics, such as predictions of the behavior of matter at the ultrahigh energies that might have prevailed in the early stages of the big bang, have greatly en hanced the interest in general relativity. These developments created a large body of readers interested in general relativity, and its applications in astrophysics and cosmology. Having neither the time nor the inclination to delve deeply into the technical literature, such readers need a general introduction to the subject before exploring applica tions. It is for these readers that the present volume is intended. Keeping in mind the broad range of interests and wanting to avoid mathematical compli cations as much as possible, we have ventured to combine all three topics relativity, astrophysics, and cosmology-in a single volume. Naturally, we had to make a careful selection of topics to be discussed in order to keep the book to a manageable length.
Relativistic Astrophysics and Cosmology offers a succinct and self-contained treatment of general relativity and its application to compact objects, gravitational waves and cosmology. The required mathematical concepts are introduced informally, following geometrical intuition as much as possible. The approach is theoretical, but there is ample discussion of observational aspects and of instrumental issues where appropriate. The book includes such topical issues as the Gravity Probe B mission, interferometer detectors of gravitational waves, and the physics behind the angular power spectrum of the cosmic microwave background (CMB). Written for advanced undergraduates and beginning graduate students in (astro)physics, it is ideally suited for a lecture course and contains 140 exercises with extensive hints. The reader is assumed to be familiar with linear algebra and analysis, ordinary differential equations, special relativity, and basic thermal physics.
The 1972 Banff lectures attempted a systematic exposition of the ideas underlying recent developments in general relativity and its astronomical applications at a level accessible and useful to graduate students having some previous acquaintance with the subject. To our regret, it was not possible to include any printed record of Peebles' beautiful lectures on observational cosmology or of the many stimulating seminars on special topics contributed by the participants. What remains is nevertheless a reason ably self-contained and compact introduction to Einstein's theory in its modern in carnation, and we hope it will be found useful by the many physicists, astronomers, and mathematicians who wish to update and deepen their understanding of the theory. On behalf of the organizing committee, I should like to express appreciation to a number of people whose help was crucial to the success of the enterprise: to Jan van Kranendonk, who initiated the idea of a Banff summer school on general relativity; to him and to David Rowe and Don Betts for inspiration and moral support; to our indefatigable secretaries Olwyn Buckland and Leslie Hughes; and to Garry Nash, Richard Sigal, Tim Spanos, and Gordon Wilson who helped in a variety of ways to keep the wheels running. How much we owe to the splendid cooperative effort of the lecturers will be clear to any reader of the following pages.
Introduction to General Relativity and Cosmology gives undergraduate students an overview of the fundamental ideas behind the geometric theory of gravitation and spacetime. Through pointers on how to modify and generalise Einstein's theory to enhance understanding, it provides a link between standard textbook content and current research in the field.Chapters present complicated material practically and concisely, initially dealing with the mathematical foundations of the theory of relativity, in particular differential geometry. This is followed by a discussion of the Einstein field equations and their various properties. Also given is analysis of the important Schwarzschild solutions, followed by application of general relativity to cosmology. Questions with fully worked answers are provided at the end of each chapter to aid comprehension and guide learning. This pared down textbook is specifically designed for new students looking for a workable, simple presentation of some of the key theories in modern physics and mathematics.
The foundations are thoroughly developed together with the required mathematical background from differential geometry developed in Part III. The author also discusses the tests of general relativity in detail, including binary pulsars, with much space is devoted to the study of compact objects, especially to neutron stars and to the basic laws of black-hole physics. This well-structured text and reference enables readers to easily navigate through the various sections as best matches their backgrounds and perspectives, whether mathematical, physical or astronomical. Very applications oriented, the text includes very recent results, such as the supermassive black-hole in our galaxy and first double pulsar system
Landmark study discusses Einstein's theory, extends thermodynamics to special and general relativity, and also develops the applications of relativistic mechanics and thermodynamics to cosmological models.
Unlike most traditional introductory textbooks on relativity and cosmology that answer questions like “Does accelerated expansion pull our bodies apart?”, “Does the presence of dark matter affect the classical tests of general relativity?” in a qualitative manner, the present text is intended as a foundation, enabling students to read and understand the textbooks and many of the scientific papers on the subject. And, above all, the readers are taught and encouraged to do their own calculations, check the numbers and answer the above and other questions regarding the most exciting discoveries and theoretical developments in general relativistic cosmology, which have occurred since the early 1980s. In comparison to these intellectual benefits the text is short. In fact, its brevity without neglect of scope or mathematical accessibility of key points is rather unique. The authors connect the necessary mathematical concepts and their reward, i.e. the understanding of an important piece of modern physics, along the shortest path. The unavoidable mathematical concepts and tools are presented in as straightforward manner as possible. Even though the mathematics is not very difficult, it certainly is beneficial to know some statistical thermodynamics as well as some quantum mechanics. Thus the text is suitable for the upper undergraduate curriculum.
This book provides a completely revised and expanded version of the previous classic edition ‘General Relativity and Relativistic Astrophysics’. In Part I the foundations of general relativity are thoroughly developed, while Part II is devoted to tests of general relativity and many of its applications. Binary pulsars – our best laboratories for general relativity – are studied in considerable detail. An introduction to gravitational lensing theory is included as well, so as to make the current literature on the subject accessible to readers. Considerable attention is devoted to the study of compact objects, especially to black holes. This includes a detailed derivation of the Kerr solution, Israel’s proof of his uniqueness theorem, and a derivation of the basic laws of black hole physics. Part II ends with Witten’s proof of the positive energy theorem, which is presented in detail, together with the required tools on spin structures and spinor analysis. In Part III, all of the differential geometric tools required are developed in detail. A great deal of effort went into refining and improving the text for the new edition. New material has been added, including a chapter on cosmology. The book addresses undergraduate and graduate students in physics, astrophysics and mathematics. It utilizes a very well structured approach, which should help it continue to be a standard work for a modern treatment of gravitational physics. The clear presentation of differential geometry also makes it useful for work on string theory and other fields of physics, classical as well as quantum.
Surveying key developments and open issues in cosmology for graduate students and researchers, this book focuses on the general concepts and relations that underpin the standard model of the Universe. It also examines anisotropic and inhomogeneous models, and deeper issues, such as quantum cosmology and the multiverse proposal.
"This book is a rigorous text for students in physics and mathematics requiring an introduction to the implications and interpretation of general relativity in areas of cosmology. Readers of this text will be well prepared to follow the theoretical developments in the field and undertake research projects as part of an MSc or PhD programme. This ebook contains interactive Q & A technology, allowing the reader to interact with the text and reveal answers to selected exercises posed by the author within the book. This feature may not function in all formats and on reading devices."--Prové de l'editor.