Download Free Gene Therapy For Neurological Disorders Book in PDF and EPUB Free Download. You can read online Gene Therapy For Neurological Disorders and write the review.

Neurological illnesses pose one of the biggest hazards to the healthcare system today. This new book brings together the latest methods of gene therapy that can be used to treat both inherited and sporadic neurodegenerative diseases. It presents the most significant advances in gene transfer methods as well as the most recent understandings of the mechanisms behind specific neurodegenerative illnesses, placing these into the context of gene therapy approaches for the central nervous system. The book introduces the basics of neurodegenerative conditions and the physiological basis for their occurrence in humans. It also discusses the various proteins useful in neuro diseases and their viral applications. The book explores how stem cells can be used to learn about the future of gene therapy along with the significance of the sequences that silence genes. It discusses the functions of astrocytes in different brain regions, as well as in-vivo research in gene therapy for neurodegenerative disorders.
Gene therapy has tremendous potential for the treatment of neurological disorders. There has been substantial progress in the development of gene therapy strategies for neurological disorders over the last two decades. Gene Therapy in Neurological Disorders thoroughly reviews currently available gene therapy tools and presents examples of their application in a variety of neurological diseases. The book begins with general reviews of gene therapy strategies with a focus on neurological disorders. The remainder of the chapters present approaches to specific neurological disorders. Each chapter gives an in-depth introduction to the relevant field before diving into the specific tool or application. The book aims to help investigators, students and research staff better understand the principles of gene therapy and its application in the nervous system. - Provides background information and experimental details of gene therapy tools applied for neuroscience research and neurological disorders - Covers a broad range of gene delivery and regulation tools, therapeutic agents, and target cells, including emerging new technologies such as CRISPR/Cas9 genome editing - Discusses applications of gene therapy tools to neurological disorders including neurodegeneration, muscular dystrophy, trauma and chronic pain, and neoplastic diseases
Leading gene therapy researchers and clinicians illuminate the field-from basic vector technology to current and future clinical applications in neurology. The authoritative contributors provide cutting-edge reviews of the vectors available for gene transfer to the central nervous system, the strategies against CNS tumors, the potential strategies against neurologic disorder, and the limitations of today's gene therapy approaches. Also discussed are significant applications of gene therapy to brain tumors, Parkinson's disease, ischemia, and Huntington's chorea. Readers will learn the current delivery methods for transgenes, will learn the characteristics of transgene delivery vectors, and come to understand the therapy for both neuro-oncologic and neurologic disorders.
Neuroscience Perspectives provides multidisciplinary reviews of topics in one of the most diverse and rapidly advancing fields in the life sciences.Whether you are a new recruit to neuroscience, or an established expert, look to this series for 'one-stop' sources of the historical, physiological, pharmacological, biochemical, molecular biological and therapeutic aspects of chosen research areas.The recent development of Gene Therapy procedures which allow specific genes to be delivered to human patients who lack functional copies of them is of major therapeutic importance. In addition such gene delivery methods can be used in other organisms to define the function of particular genes. These studies are of particular interest in the nervous system where there are many incurable diseases like Alzheimer's and Parkinson's diseases which may benefit from therapies of this kind. Unfortunately gene delivery methods for use in the nervous system have lagged behind those in other systems due to the fact that the methods developed in other systems are often not applicable to cells like neurons which do not divide. This book discusses a wide range of methods which have now been developed to overcome these problems and allow safe and efficient delivery of particular genes to the brain. Methods discussed include virological methods, physical methods (such as liposomes) and the transplantation of genetically modified cells. In a single volume therefore this book provides a complete view of these methods and indicates how they can be applied to the development of therapies for treating previously incurable neurological disorders.
Few areas of biomedical research provide greater opportunities to capitalize upon the revolution in genomics and molecular biology than gene therapy. This is particularly true for the brain and nervous system, where gene transfer has become a key technology for basic research and has recently been translated to human therapy in several landmark clinical trials. Gene Therapy in the Brain: From Bench to Bedside represents the definitive volume on this subject. Edited by two pioneers of neurological gene therapy, this volume contains contributions by leaders who helped to create the field as well as those who are expanding the promise of gene therapy for the future of basic and clinical neuroscience. Drawing upon this extensive collective experience, this book provides clear and informative reviews on a variety of subjects which would be of interest to anyone who is currently using or contemplating exploring gene therapy for neurobiological applications. Basic gene transfer technologies are discussed, with particular emphases upon novel vehicles, immunological issues and the role of gene therapy in stem cells. Numerous research applications are reviewed, particularly in complex fields such as behavioral neurobiology. Several preclinical areas are also covered which are likely to translate into clinical studies in the near future, including epilepsy, pain and amyotrophic lateral sclerosis. Among the most exciting advances in recent years has been the use of neurological gene therapy in human clinical trials, including Parkinson's disease, Canavan disease and Batten disease. Finally, readers will find "insider" information on technological and regulatory issues which can often limit effective translation of even the most promising idea into clinical use. This work provides up-to-date information and key insights into those gene therapy issues which are important to both scientists and clinicians focusing upon the brain and central nervous system.
This volume in the prestigious Methods in Enzymology series discusses methods currently used in preclinical and clinical gene therapy. Subjects covered in this book, such as the use of adeno-associated virus delivery for treatment of Parkinson's disease, are topical and are presented in the methods-oriented style popularized by this series. Discusses methods currently used in preclinical and clinical gene therapy Covers the use of adeno-associated virus delivery for treatment of Parkinson's disease
Translational Neuroscience offers a far-reaching and insightful series of perspectives on the effort to bring potentially revolutionary new classes of therapies to the clinic, thereby transforming the treatment of human nervous system disorders. Great advances in the fields of basic neuroscience, molecular biology, genomics, gene therapy, cell therapy, stem cell biology, information technology, neuro devices, rehabilitation and others over the last 20 years have generated unprecedented opportunities to treat heretofore untreatable disorders of the nervous system. This book provides a wide-ranging yet detailed sample of many of these efforts, together with the methods for pursuing clinical translation and assessing clinical outcomes. Among the topics covered are Alzheimer’s disease, Parkinson’s disease, stroke, multiple sclerosis, epilepsy, motor neuron disease, pain, inborn errors of metabolism, brain tumors, spinal cord injury, neuroprosthetics, rehabilitation and clinical trial design/consideration. Translational Neuroscience is aimed at basic neuroscientists, translational neuroscientists and clinicians who seek to gain a perspective on the nature and promise of translational therapies in the current era. Both students and established professionals will benefit from the content.
Current data and trends in morbidity and mortality for the sub-Saharan Region as presented in this new edition reflect the heavy toll that HIV/AIDS has had on health indicators, leading to either a stalling or reversal of the gains made, not just for communicable disorders, but for cancers, as well as mental and neurological disorders.
A comprehensive review of contemporary antisense oligonucleotides drugs and therapeutic principles, methods, applications, and research Oligonucleotide-based drugs, in particular antisense oligonucleotides, are part of a growing number of pharmaceutical and biotech programs progressing to treat a wide range of indications including cancer, cardiovascular, neurodegenerative, neuromuscular, and respiratory diseases, as well as other severe and rare diseases. Reviewing fundamentals and offering guidelines for drug discovery and development, this book is a practical guide covering all key aspects of this increasingly popular area of pharmacology and biotech and pharma research, from the basic science behind antisense oligonucleotides chemistry, toxicology, manufacturing, to safety assessments, the design of therapeutic protocols, to clinical experience. Antisense oligonucleotides are single strands of DNA or RNA that are complementary to a chosen sequence. While the idea of antisense oligonucleotides to target single genes dates back to the 1970's, most advances have taken place in recent years. The increasing number of antisense oligonucleotide programs in clinical development is a testament to the progress and understanding of pharmacologic, pharmacokinetic, and toxicologic properties as well as improvement in the delivery of oligonucleotides. This valuable book reviews the fundamentals of oligonucleotides, with a focus on antisense oligonucleotide drugs, and reports on the latest research underway worldwide. • Helps readers understand antisense molecules and their targets, biochemistry, and toxicity mechanisms, roles in disease, and applications for safety and therapeutics • Examines the principles, practices, and tools for scientists in both pre-clinical and clinical settings and how to apply them to antisense oligonucleotides • Provides guidelines for scientists in drug design and discovery to help improve efficiency, assessment, and the success of drug candidates • Includes interdisciplinary perspectives, from academia, industry, regulatory and from the fields of pharmacology, toxicology, biology, and medicinal chemistry Oligonucleotide-Based Drugs and Therapeutics belongs on the reference shelves of chemists, pharmaceutical scientists, chemical biologists, toxicologists and other scientists working in the pharmaceutical and biotechnology industries. It will also be a valuable resource for regulatory specialists and safety assessment professionals and an important reference for academic researchers and post-graduates interested in therapeutics, antisense therapy, and oligonucleotides.