Download Free Gene Regulatory Networks Book in PDF and EPUB Free Download. You can read online Gene Regulatory Networks and write the review.

This volume explores recent techniques for the computational inference of gene regulatory networks (GRNs). The chapters in this book cover topics such as methods to infer GRNs from time-varying data; the extraction of causal information from biological data; GRN inference from multiple heterogeneous data sets; non-parametric and hybrid statistical methods; the joint inference of differential networks; and mechanistic models of gene regulation dynamics. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, descriptions of recently developed methods for GRN inference, applications of these methods on real and/ or simulated biological data, and step-by-step tutorials on the usage of associated software tools. Cutting-edge and thorough, Gene Regulatory Networks: Methods and Protocols is an essential tool for evaluating the current research needed to further address the common challenges faced by specialists in this field.
This book serves as an introduction to the myriad computational approaches to gene regulatory modeling and analysis, and is written specifically with experimental biologists in mind. Mathematical jargon is avoided and explanations are given in intuitive terms. In cases where equations are unavoidable, they are derived from first principles or, at the very least, an intuitive description is provided. Extensive examples and a large number of model descriptions are provided for use in both classroom exercises as well as self-guided exploration and learning. As such, the book is ideal for self-learning and also as the basis of a semester-long course for undergraduate and graduate students in molecular biology, bioengineering, genome sciences, or systems biology.
The first comprehensive treatment of probabilistic Boolean networks, unifying different strands of current research and addressing emerging issues.
This volume presents protocols that analyze and explore gene regulatory networks (GRNs) at different levels in plants. This book is divided into two parts: Part I introduces different experimental techniques used to study genes and their regulatory interactions in plants. Part II highlights different computational approaches used for the integration of experimental data and bioinformatics-based predictions of regulatory interactions. This part of the book also provides information on essential database resources that grant access to gene-regulatory and molecular interactions in different plant genomes, with a specific focus on Arabidopsis thaliana. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Thorough and cutting-edge, Plant Gene Regulatory Networks: Methods and Protocols is a valuable resource for scientists and researchers interested in expanding their knowledge of GRNs.
This book presents recent methods for Systems Genetics (SG) data analysis, applying them to a suite of simulated SG benchmark datasets. Each of the chapter authors received the same datasets to evaluate the performance of their method to better understand which algorithms are most useful for obtaining reliable models from SG datasets. The knowledge gained from this benchmarking study will ultimately allow these algorithms to be used with confidence for SG studies e.g. of complex human diseases or food crop improvement. The book is primarily intended for researchers with a background in the life sciences, not for computer scientists or statisticians.
Systems Immunology and Infection Microbiology provides a large amount of biological system models, diagrams and flowcharts to illustrate development procedures and help users understand the results of systems immunology and infection microbiology. Chapters discuss systems immunology, systems infection microbiology, systematic inflammation and immune responses in restoration and regeneration process, systems' innate and adaptive immunity in infection process, systematic genetic and epigenetic pathogenic/defensive mechanism during bacterial infection on human cells is introduced, and the systematic genetic and epigenetic pathogenic/defensive mechanisms during viral infection on human cells. This book provides new big data-driven and systems-driven systems immunology and infection microbiology to researchers applying systems biology and bioinformatics in their work. It is also invaluable to several members of biomedical field who are interested in learning more about those approaches. - Encompasses one applicable example in every chapter to illustrate the solution procedure from big data mining, network modeling, host/pathogen cross-talk detection, drug target identification and systems drug design - Presents flowcharts to represent the development procedure of systematic immunology and infection in a very clear format - Contains 100 color diagrams to help readers understand the related biological networks, their corresponding mechanisms, and significant network biomarkers for therapeutic drug design
"This book focuses on methods widely used in modeling gene networks including structure discovery, learning, and optimization"--Provided by publisher.
Genomic Control Process explores the biological phenomena around genomic regulatory systems that control and shape animal development processes, and which determine the nature of evolutionary processes that affect body plan. Unifying and simplifying the descriptions of development and evolution by focusing on the causality in these processes, it provides a comprehensive method of considering genomic control across diverse biological processes. This book is essential for graduate researchers in genomics, systems biology and molecular biology seeking to understand deep biological processes which regulate the structure of animals during development. - Covers a vast area of current biological research to produce a genome oriented regulatory bioscience of animal life - Places gene regulation, embryonic and postembryonic development, and evolution of the body plan in a unified conceptual framework - Provides the conceptual keys to interpret a broad developmental and evolutionary landscape with precise experimental illustrations drawn from contemporary literature - Includes a range of material, from developmental phenomenology to quantitative and logic models, from phylogenetics to the molecular biology of gene regulation, from animal models of all kinds to evidence of every relevant type - Demonstrates the causal power of system-level understanding of genomic control process - Conceptually organizes a constellation of complex and diverse biological phenomena - Investigates fundamental developmental control system logic in diverse circumstances and expresses these in conceptual models - Explores mechanistic evolutionary processes, illuminating the evolutionary consequences of developmental control systems as they are encoded in the genome
Gene regulatory networks are the most complex, extensive control systems found in nature. The interaction between biology and evolution has been the subject of great interest in recent years. The author, Eric Davidson, has been instrumental in elucidating this relationship. He is a world renowned scientist and a major contributor to the field of developmental biology. The Regulatory Genome beautifully explains the control of animal development in terms of structure/function relations of inherited regulatory DNA sequence, and the emergent properties of the gene regulatory networks composed of these sequences. New insights into the mechanisms of body plan evolution are derived from considerations of the consequences of change in developmental gene regulatory networks. Examples of crucial evidence underscore each major concept. The clear writing style explains regulatory causality without requiring a sophisticated background in descriptive developmental biology. This unique text supersedes anything currently available in the market. - The only book in the market that is solely devoted to the genomic regulatory code for animal development - Written at a conceptual level, including many novel synthetic concepts that ultimately simplify understanding - Presents a comprehensive treatment of molecular control elements that determine the function of genes - Provides a comparative treatment of development, based on principles rather than description of developmental processes - Considers the evolutionary processes in terms of the structural properties of gene regulatory networks - Includes 42 full-color descriptive figures and diagrams
An overview of current computational approaches to metabolism and gene regulation.