Download Free Gear Crack Propagation Path Studies Guidelines For Ultra Safe Design Book in PDF and EPUB Free Download. You can read online Gear Crack Propagation Path Studies Guidelines For Ultra Safe Design and write the review.

Design guidelines have been established to prevent catastrophic rim fracture failure modes when considering gear tooth bending fatigue. Analysis was performed using the finite element method with principles of linear elastic fracture mechanics. Crack propagation paths were predicted for a variety of gear tooth and rim configurations. The effects of rim and web thicknesses, initial crack locations, and gear tooth geometry factors such as diametral pitch, number of teeth, pitch radius, and tooth pressure angle were considered. Design maps of tooth/rim fracture modes including effects of gear geometry, applied load, crack size, and material properties were developed. The occurrence of rim fractures significantly increased as the backup ratio (rim thickness divided by tooth height) decreased. The occurrence of rim fractures also increased as the initial crack location was moved down the root of the tooth. Increased rim and web compliance increased the occurrence of rim fractures. For gears with constant pitch radii, coarser-pitch teeth increased the occurrence of tooth fractures over rim fractures. Also, 250 pressure angle teeth had an increased occurrence of tooth fractures over rim fractures when compared to 200 pressure angle teeth. For gears with constant number of teeth or gears with constant diametral pitch, varying size had little or no effect on crack propagation paths.
Three-dimensional crack growth simulation was performed on a split-tooth gear design using boundary element modeling and linear elastic fracture mechanics. Initial cracks in the fillet of the teeth produced stress intensity factors of greater magnitude (and thus, greater crack growth rates) than those in the root or groove areas of the teeth. Crack growth simulation was performed on a case study to evaluate crack propagation paths. Tooth fracture was predicted from the crack growth simulation for an initial crack in the tooth fillet region. Tooth loads on the uncracked mesh of the split-tooth design were up to five times greater than those on the cracked mesh if equal deflections of the cracked and uncracked teeth were considered. Predicted crack shapes as well as crack propagation life are presented based on calculated stress intensity factors, mixed-mode crack propagation trajectory theories, and fatigue crack growth theories.
The book substantially offers the latest progresses about the important topics of the "Mechanical Engineering" to readers. It includes twenty-eight excellent studies prepared using state-of-art methodologies by professional researchers from different countries. The sections in the book comprise of the following titles: power transmission system, manufacturing processes and system analysis, thermo-fluid systems, simulations and computer applications, and new approaches in mechanical engineering education and organization systems.
Damage prognosis is a natural extension of damage detection and structural health monitoring and is forming a growing part of many businesses. This comprehensive volume presents a series of fundamental topics that define the new area of damage prognosis. Bringing together essential information in each of the basic technologies necessary to perform damage prognosis, it also reflects the highly interdisciplinary nature of the industry through the extensive referencing of each of the component disciplines. Taken from lectures given at the Pan American Advanced Studies Institute in Damage Prognosis sponsored by the US National Science Foundation in cooperation with Los Alamos National Laboratories, this book will be essential reading for anyone looking to get to grips with the fundamentals of damage prognosis. Presents the 'ground rules' for Damage Prognosis. Deals with interdisciplinary topics: rotating machines, aerospace structures, automotive components and civil structures. Covers essential technical material: equations, graphs and plots, tables and photographs. Offers additional material from the associated workshop on an active web site.