Download Free Gaussian Measures In Hilbert Space Book in PDF and EPUB Free Download. You can read online Gaussian Measures In Hilbert Space and write the review.

At the nexus of probability theory, geometry and statistics, a Gaussian measure is constructed on a Hilbert space in two ways: as a product measure and via a characteristic functional based on Minlos-Sazonov theorem. As such, it can be utilized for obtaining results for topological vector spaces. Gaussian Measures contains the proof for Ferniques theorem and its relation to exponential moments in Banach space. Furthermore, the fundamental Feldman-Hájek dichotomy for Gaussian measures in Hilbert space is investigated. Applications in statistics are also outlined. In addition to chapters devoted to measure theory, this book highlights problems related to Gaussian measures in Hilbert and Banach spaces. Borel probability measures are also addressed, with properties of characteristic functionals examined and a proof given based on the classical Banach Steinhaus theorem. Gaussian Measures is suitable for graduate students, plus advanced undergraduate students in mathematics and statistics. It is also of interest to students in related fields from other disciplines. Results are presented as lemmas, theorems and corollaries, while all statements are proven. Each subsection ends with teaching problems, and a separate chapter contains detailed solutions to all the problems. With its student-tested approach, this book is a superb introduction to the theory of Gaussian measures on infinite-dimensional spaces.
This book treats the very special and fundamental mathematical properties that hold for a family of Gaussian (or normal) random variables. Such random variables have many applications in probability theory, other parts of mathematics, statistics and theoretical physics. The emphasis throughout this book is on the mathematical structures common to all these applications. This will be an excellent resource for all researchers whose work involves random variables.
Based on well-known lectures given at Scuola Normale Superiore in Pisa, this book introduces analysis in a separable Hilbert space of infinite dimension. It starts from the definition of Gaussian measures in Hilbert spaces, concepts such as the Cameron-Martin formula, Brownian motion and Wiener integral are introduced in a simple way. These concepts are then used to illustrate basic stochastic dynamical systems and Markov semi-groups, paying attention to their long-time behavior.
The book covers theoretical questions including the latest extension of the formalism, and computational issues and focuses on some of the more fruitful and promising applications, including statistical signal processing, nonparametric curve estimation, random measures, limit theorems, learning theory and some applications at the fringe between Statistics and Approximation Theory. It is geared to graduate students in Statistics, Mathematics or Engineering, or to scientists with an equivalent level.
This book gives a systematic exposition of the modern theory of Gaussian measures. It presents with complete and detailed proofs fundamental facts about finite and infinite dimensional Gaussian distributions. Covered topics include linear properties, convexity, linear and nonlinear transformations, and applications to Gaussian and diffusion processes. Suitable for use as a graduate text and/or a reference work, this volume contains many examples, exercises, and an extensive bibliography. It brings together many results that have not appeared previously in book form.
Inequalities play a fundamental role in Functional Analysis and it is widely recognized that finding them, especially sharp estimates, is an art. E. H. Lieb has discovered a host of inequalities that are enormously useful in mathematics as well as in physics. His results are collected in this book which should become a standard source for further research. Together with the mathematical proofs the author also presents numerous applications to the calculus of variations and to many problems of quantum physics, in particular to atomic physics.
A comprehensive introduction to the role of Property (T), with applications to an amazing number of fields within mathematics.
Isoperimetric, measure concentration and random process techniques appear at the basis of the modern understanding of Probability in Banach spaces. Based on these tools, the book presents a complete treatment of the main aspects of Probability in Banach spaces (integrability and limit theorems for vector valued random variables, boundedness and continuity of random processes) and of some of their links to Geometry of Banach spaces (via the type and cotype properties). Its purpose is to present some of the main aspects of this theory, from the foundations to the most important achievements. The main features of the investigation are the systematic use of isoperimetry and concentration of measure and abstract random process techniques (entropy and majorizing measures). Examples of these probabilistic tools and ideas to classical Banach space theory are further developed.
The book is devoted to the theory of gradient flows in the general framework of metric spaces, and in the more specific setting of the space of probability measures, which provide a surprising link between optimal transportation theory and many evolutionary PDE's related to (non)linear diffusion. Particular emphasis is given to the convergence of the implicit time discretization method and to the error estimates for this discretization, extending the well established theory in Hilbert spaces. The book is split in two main parts that can be read independently of each other.