Download Free Gaussian Measures Book in PDF and EPUB Free Download. You can read online Gaussian Measures and write the review.

This book gives a systematic exposition of the modern theory of Gaussian measures. It presents with complete and detailed proofs fundamental facts about finite and infinite dimensional Gaussian distributions. Covered topics include linear properties, convexity, linear and nonlinear transformations, and applications to Gaussian and diffusion processes. Suitable for use as a graduate text and/or a reference work, this volume contains many examples, exercises, and an extensive bibliography. It brings together many results that have not appeared previously in book form.
At the nexus of probability theory, geometry and statistics, a Gaussian measure is constructed on a Hilbert space in two ways: as a product measure and via a characteristic functional based on Minlos-Sazonov theorem. As such, it can be utilized for obtaining results for topological vector spaces. Gaussian Measures contains the proof for Ferniques theorem and its relation to exponential moments in Banach space. Furthermore, the fundamental Feldman-Hájek dichotomy for Gaussian measures in Hilbert space is investigated. Applications in statistics are also outlined. In addition to chapters devoted to measure theory, this book highlights problems related to Gaussian measures in Hilbert and Banach spaces. Borel probability measures are also addressed, with properties of characteristic functionals examined and a proof given based on the classical Banach Steinhaus theorem. Gaussian Measures is suitable for graduate students, plus advanced undergraduate students in mathematics and statistics. It is also of interest to students in related fields from other disciplines. Results are presented as lemmas, theorems and corollaries, while all statements are proven. Each subsection ends with teaching problems, and a separate chapter contains detailed solutions to all the problems. With its student-tested approach, this book is a superb introduction to the theory of Gaussian measures on infinite-dimensional spaces.
This text provides a concise introduction, suitable for a one-semester special topicscourse, to the remarkable properties of Gaussian measures on both finite and infinitedimensional spaces. It begins with a brief resumé of probabilistic results in which Fourieranalysis plays an essential role, and those results are then applied to derive a few basicfacts about Gaussian measures on finite dimensional spaces. In anticipation of the analysisof Gaussian measures on infinite dimensional spaces, particular attention is given to those/divproperties of Gaussian measures that are dimension independent, and Gaussian processesare constructed. The rest of the book is devoted to the study of Gaussian measures onBanach spaces. The perspective adopted is the one introduced by I. Segal and developedby L. Gross in which the Hilbert structure underlying the measure is emphasized.The contents of this book should be accessible to either undergraduate or graduate/divstudents who are interested in probability theory and have a solid background in Lebesgueintegration theory and a familiarity with basic functional analysis. Although the focus ison Gaussian measures, the book introduces its readers to techniques and ideas that haveapplications in other contexts.
Measure and Integration Theory on Infinite-Dimensional Spaces
It is well known that the normal distribution is the most pleasant, one can even say, an exemplary object in the probability theory. It combines almost all conceivable nice properties that a distribution may ever have: symmetry, stability, indecomposability, a regular tail behavior, etc. Gaussian measures (the distributions of Gaussian random functions), as infinite-dimensional analogues of tht
This monograph develops the Gaussian functional capacity theory with applications to restricting the Gaussian Campanato/Sobolev/BV space. Included in the text is a new geometric characterization of the Gaussian 1-capacity and the Gaussian Poincaré 1-inequality. Applications to function spaces and geometric measures are also presented. This book will be of use to researchers who specialize in potential theory, elliptic differential equations, functional analysis, probability, and geometric measure theory.
This book treats the very special and fundamental mathematical properties that hold for a family of Gaussian (or normal) random variables. Such random variables have many applications in probability theory, other parts of mathematics, statistics and theoretical physics. The emphasis throughout this book is on the mathematical structures common to all these applications. This will be an excellent resource for all researchers whose work involves random variables.
Gaussian processes can be viewed as a far-reaching infinite-dimensional extension of classical normal random variables. Their theory presents a powerful range of tools for probabilistic modelling in various academic and technical domains such as Statistics, Forecasting, Finance, Information Transmission, Machine Learning - to mention just a few. The objective of these Briefs is to present a quick and condensed treatment of the core theory that a reader must understand in order to make his own independent contributions. The primary intended readership are PhD/Masters students and researchers working in pure or applied mathematics. The first chapters introduce essentials of the classical theory of Gaussian processes and measures with the core notions of reproducing kernel, integral representation, isoperimetric property, large deviation principle. The brevity being a priority for teaching and learning purposes, certain technical details and proofs are omitted. The later chapters touch important recent issues not sufficiently reflected in the literature, such as small deviations, expansions, and quantization of processes. In university teaching, one can build a one-semester advanced course upon these Briefs.​
This book is based on lectures given at Yale and Kyoto Universities and provides a self-contained detailed exposition of the following subjects: 1) The construction of infinite dimensional measures, 2) Invariance and quasi-invariance of measures under translations. This book furnishes an important tool for the analysis of physical systems with infinite degrees of freedom (such as field theory, statistical physics and field dynamics) by providing material on the foundations of these problems.