Download Free Gases In Molten Salts Book in PDF and EPUB Free Download. You can read online Gases In Molten Salts and write the review.

This volume contains tabulated collections and critical evaluations of original data for the solubility of gases in molten salts, gathered from chemical literature through to the end of 1989. Within the volume, material is arranged according to the individual gas. The gases include hydrogen halides, inert gases, oxygen, nitrogen, hydrogen, carbon dioxide, water vapor and halogens. The molten salts consist of single salts, binary mixtures and multicomponent systems. Included also, is a special section on the solubility of gases in molten silicate systems, focussing on slags and fluxes.
Molten salts and fused media provide the key properties and the theory of molten salts, as well as aspects of fused salts chemistry, helping you generate new ideas and applications for fused salts. Molten Salts Chemistry: From Lab to Applications examines how the electrical and thermal properties of molten salts, and generally low vapour pressure are well adapted to high temperature chemistry, enabling fast reaction rates. It also explains how their ability to dissolve many inorganic compounds such as oxides, nitrides, carbides and other salts make molten salts ideal as solvents in electrometallurgy, metal coating, treatment of by-products and energy conversion. This book also reviews newer applications of molten salts including materials for energy storage such as carbon nano-particles for efficient super capacitors, high capacity molten salt batteries and for heat transport and storage in solar plants. In addition, owing to their high thermal stability, they are considered as ideal candidates for the development of safer nuclear reactors and for the treatment of nuclear waste, especially to separate actinides from lanthanides by electrorefining.
An element of obvious importance, mercury is also hazardous in the environment and corrosive to many materials. A knowledge of its solubility is inestimable in addressing problems concerning the element's concentration in our surroundings. This volume presents all relevant data published on the solubility of mercury up to June 1986. By combining these data with the mercury equilibrium vapour pressure, Henry's constant and Ostwald coefficients can be calculated.
Molten Salt Reactors and Thorium Energy, Second Edition is a fully updated comprehensive reference on the latest advances in MSR research and technology. Building on the successful first edition, Tom Dolan and the team of experts have fully updated the content to reflect the impressive advances from the last 5 years, ensuring this book continues to be the go-to reference on the topic. This new edition covers progress made in MSR design, details innovative experiments, and includes molten salt data, corrosion studies and deployment plans. The successful case studies section of the first edition have been removed, expanded, and fully updated, and are now published in a companion title called Global Case Studies on Molten Salt Reactors. Readers will gain a deep understanding of the advantages and challenges of MSR development and thorium fuel use, as well as step-by-step guidance on the latest in MSR reactor design. Each chapter provides a clear introduction, covers technical issues and includes examples and conclusions, while promoting the sustainability benefits throughout. - A fully updated comprehensive handbook on Molten Salt Reactors and Thorium Energy, written by a team of global experts - Covers MSR applications, technical issues, reactor types and reactor designs - Includes 3 brand new chapters which reflect the latest advances in research and technology since the first edition published - Presents case studies on molten salt reactors which aid in the transition to net zero by providing abundant clean, safe energy to complement wind and solar powe
Written to record and report on recent research progresses in the field of molten salts, Molten Salts Chemistry and Technology focuses on molten salts and ionic liquids for sustainable supply and application of materials. Including coverage of molten salt reactors, electrodeposition, aluminium electrolysis, electrochemistry, and electrowinning, the text provides researchers and postgraduate students with applications include energy conversion (solar cells and fuel cells), heat storage, green solvents, metallurgy, nuclear industry, pharmaceutics and biotechnology.
Molten salts and fused media provide the key properties and the theory of molten salts, as well as aspects of fused salts chemistry, helping you generate new ideas and applications for fused salts.Molten Salts Chemistry: From Lab to Applications examines how the electrical and thermal properties of molten salts, and generally low vapour pressure are well adapted to high temperature chemistry, enabling fast reaction rates. It also explains how their ability to dissolve many inorganic compounds such as oxides, nitrides, carbides and other salts make molten salts ideal as solvents in electrometallurgy, metal coating, treatment of by-products and energy conversion.This book also reviews newer applications of molten salts including materials for energy storage such as carbon nano-particles for efficient super capacitors, high capacity molten salt batteries and for heat transport and storage in solar plants. In addition, owing to their high thermal stability, they are considered as ideal candidates for the development of safer nuclear reactors and for the treatment of nuclear waste, especially to separate actinides from lanthanides by electrorefining. - Explains the theory and properties of molten salts to help scientists understand these unique liquids - Provides an ideal introduction to this expanding field - Illustrated text with key real-life applications of molten salts in synthesis, energy, nuclear, and metal extraction
This book focuses on the possible interactions that might occur between carbon materials and molten salts, and discusses the mechanisms involved in detail, highlighting possible future developments in the field. Carbon materials can be exposed to molten salts in various technologically important applications, such as in molten salt-nuclear reactors and aluminum production electrolysis cells. As such, numerous studies have investigated the possible interactions between carbon and molten salts. In addition, various interesting carbon nanostructures have recently been produced in molten salts, including carbon nanotubes, graphene and nanodiamonds with a number of attractive applications. With abundant images and graphs supporting the discussion, this book appeals to researchers working in the field of carbon nanostructures, carbon capture and conversion, nuclear reactors, energy storage, molten salts and related areas of science and technology.
For many years, the related fields of molten salts and ionic liquids have drifted apart, to their mutual detriment. Both molten salts and ionic liquids are liquid salts containing only ions - all that is different is the temperature! Both fields involve the study of Coulombic fluids for academic and industrial purposes; both employ the same principles; both require skilled practitioners; both speak the same language; all then that is truly different is their semantics, and how superficial is that? The editors of this book, recognising that there was so much knowledge, both empirical and theoretical, which can be passed from the molten salt community to the ionic liquid community, and vice versa, organised a landmark meeting in Tunisia, designed to bridge the gap and heal the rift. Leaders from both communities met for a week for a mutual exchange, with a high tutorial content intermixed with cutting edge findings. This volume is a condensate of the principal offerings of that week, and emphasises the success which was achieved. Indeed, four future biannual meetings, under the title of “EUCHEM Conferences on Molten Salts and Ionic Liquids”, have now been planned as a direct result of this meeting of minds. Topics discussed in this volume include structure, dynamics, electrochemistry, interfacial and thermodynamic properties, spectroscopy, synthesis, and theoretical studies. Experimental and theoretical methods for investigating these data are elaborated, as are techniques for data collection and analysis. This book represents the first serious discussion on the transfer of these methods and techniques between the differing temperature regimes, and is a major contribution to the future of both fields.