Download Free Gas Liquid Solid Fluidization Engineering Book in PDF and EPUB Free Download. You can read online Gas Liquid Solid Fluidization Engineering and write the review.

This book provides a comprehensive mechanistic interpretation of the transport phenomena involved in various basic modes of gas-liquid-solid fluidization. These modes include, for example, those for three-phase fluidized beds, slurry columns, turbulent contact absorbers, and three-phase fluidized beds, slurry columns, turbulent contact absorbers, and three-phase transport. It summarizes the empirical correlations useful for predicting transport properties for each mode of of operation. Gas-Liquid-Solid Fluidization Engineering provides a comprehensive account of the state-of-the-art applications of the three-phase fluidization systems that are important in both small-and large-scale operations. These applications include fermentation, biological wastewater treatment, flue gas desulfurization and particulates removal, and resid hydrotreating. This book highlights the industrial implications of these applications. In addition, it discusses information gaps and future directions for research in this field.
A concise and clear treatment of the fundamentals of fluidization, with a view to its applications in the process and energy industries.
This book provides a comprehensive mechanistic interpretation of the transport phenomena involved in various basic modes of gas-liquid-solid fluidization. These modes include, for example, those for three-phase fluidized beds, slurry columns, turbulent contact absorbers, and three-phase fluidized beds, slurry columns, turbulent contact absorbers, and three-phase transport. It summarizes the empirical correlations useful for predicting transport properties for each mode of of operation.Gas-Liquid-Solid Fluidization Engineering provides a comprehensive account of the state-of-the-art applications of the three-phase fluidization systems that are important in both small-and large-scale operations. These applications include fermentation,biological wastewater treatment, flue gas desulfurization and particulates removal, and resid hydrotreating. This book highlights the industrial implications of these applications. In addition, it discusses information gaps and future directions forresearch in this field.
Since the late 1970s there has been an explosion of industrial and academic interest in circulating fluidized beds. In part, the attention has arisen due to the environmental advantages associated with CFB (circulating . fluidized bed) combustion systems, the incorporation of riser reactors employing cir culating fluidized bed technology in petroleum refineries for fluid catalytic cracking and, to a lesser extent, the successes of CFB technology for calcina tion reactions and Fischer-Tropsch synthesis. In part, it was also the case that too much attention had been devoted to bubbling fluidized beds and it was time to move on to more complex and more advantageous regime,S of operation. Since 1980 a number of CFB processes have been commercialized. There have been five successful International Circulating Fluidized Bed Confer ences beginning in 1985, the most recent taking place in Beijing in May 1996. In addition, we have witnessed a host of other papers on CFB funda mentals and applications in journals and other archival publications. There have also been several review papers and books on specific CFB topics. However, there has been no comprehensive book reviewing the field and attempting to provide an overview of both fundamentals and applications. The purpose of this book is to fill this vacuum.
Focuses on the major research developments which are pertinent to engineers concerned with predictive methods and design of fluidization beds.
The fluidized-bed reactor is the centerpiece of industrial fluidization processes. This book focuses on the design and operation of fluidized beds in many different industrial processes, emphasizing the rationale for choosing fluidized beds for each particular process. The book starts with a brief history of fluidization from its inception in the 1940’s. The authors present both the fluid dynamics of gas-solid fluidized beds and the extensive experimental studies of operating systems and they set them in the context of operating processes that use fluid-bed reactors. Chemical engineering students and postdocs as well as practicing engineers will find great interest in this book.
Fluidization is a technique that enables solid particles to take on some of the properties of a fluid. Despite being very widely used within the food processing industry, understanding of this important technique is often limited. Applications of Fluidization to Food Processing sets out the established theory of fluidization and relates this to food processing applications, particularly in: • Drying • Freezing • Mixing • Granulation • Fermentation This important and thorough book, written by Peter Smith, who has many years’ experience teaching and researching in food processing, is an essential tool and reference for food scientists and technologists, and engineers working within the food industry. Libraries, and research and development groups within all universities and research establishments where food science, food studies, food technology, physics and engineering are studied and taught should have copies of this useful book.
Fluidization Engineering, Second Edition, expands on its original scope to encompass these new areas and introduces reactor models specifically for these contacting regimes. Completely revised and updated, it is essentially a new book. Its aim is to distill from the thousands of studies those particular developments that are pertinent for the engineer concerned with predictive methods, for the designer, and for the user and potential user of fluidized beds. - Covers the recent advances in the field of fluidization. - Presents the studies of developments necessary to the engineers, designers, and users of fluidized beds.
Fluid Bed Technology in Materials Processing comprehensively covers the various aspects of fluidization engineering and presents an elaborate examination of the applications in a multitude of materials processing techniques. This singular resource discusses: All the basic aspects of fluidization essential to understand and learn about various techniques The range of industrial applications Several examples in extraction and process metallurgy Fluidization in nuclear engineering and nuclear fuel cycle with numerous examples Innovative techniques and several advanced concepts of fluidization engineering, including use and applications in materials processing as well as environmental and bio-engineering Pros and cons of various fluidization equipment and specialty of their applications, including several examples Design aspects and modeling Topics related to distributors effects and flow regimes A separate chapter outlines the importance of fluidization engineering in high temperature processing, including an analysis of the fundamental concepts and applications of high temperature fluidized bed furnaces for several advanced materials processing techniques. Presenting information usually not available in a single source, Fluid Bed Technology in Materials Processing serves Fluidization engineers Practicing engineers in process metallurgy, mineral engineering, and chemical metallurgy Researchers in the field of chemical, metallurgical, nuclear, biological, environmental engineering Energy engineering professionals High temperature scientists and engineers Students and professionals who adopt modeling of fluidization in their venture for design and scale up
This book provides readers with the most current, accurate, and practical fluid mechanics related applications that the practicing BS level engineer needs today in the chemical and related industries, in addition to a fundamental understanding of these applications based upon sound fundamental basic scientific principles. The emphasis remains on problem solving, and the new edition includes many more examples.