Download Free Gas Chromatographic Separation Of Hydrogen Isotopes Using Metal Hydrides Book in PDF and EPUB Free Download. You can read online Gas Chromatographic Separation Of Hydrogen Isotopes Using Metal Hydrides and write the review.

A study was made of the properties of metal hydrides which may be suitable for use in chromatographic separation of hydrogen isotopes. Sixty-five alloys were measured, with the best having a hydrogen-deuterium separation factor of 1.35 at 60°C. Chromatographic columns using these alloys produced deuterium enrichments of up to 3.6 in a single pass, using natural abundance hydrogen as starting material. 25 references, 16 figures, 4 tables.
A program to develop a metal hydride based hydrogen isotope separation process began at the Savannah River Laboratory in 1980. This semi-continuous gas chromatographic separation process will be used in new tritium facilities at the Savannah River Site. A tritium production unit is scheduled to start operation in 1993. An experimental, large-scale unit is currently being tested using protium and deuterium. Operation of the large-scale unit has demonstrated separation of mixed hydrogen isotopes (55% protium and 45% deuterium), resulting in protium and deuterium product streams with purities better than 99.5%. 3 refs., 4 figs.
Production scale separation of tritium from other hydrogen isotopes at the Savannah River Site (SRS) in Aiken, SC, has been accomplished by several methods. These methods include thermal diffusion (1957--1986), fractional absorption (1964--1968), and cryogenic distillation (1967-present). Most recently, the Thermal Cycling Absorption Process (TCAP), a metal hydride based hydrogen isotope separation system, began production in the Replacement Tritium Facility (RTF) on April 9, 1994. TCAP has been in development at the Savannah River Technology Center since 1980. The production startup of this semi-continuous gas chromatographic separation process is a significant accomplishment for the Savannah River Site and was achieved after years of design, development, and testing.
Several metal hydrides were shown to act as chromatographic media for hydrogen isotopes. The procedure was to equilibrate a column of hydride with flowing hydrogen, inject a small quantity of tritium tracer, and observe its elution behavior. Characteristic retention times were found. From these and the extent of widening of the tritium band, the heights equivalent to a theoretical plate could be calculated. Values of around 1 cm were obtained. The following are the metals whose hydrides were studied, together with the temperature ranges in which chromatographic behavior was observed: vanadium, 0 to 70°C; zirconium, 500 to 600°C; LaNi5, -78 to +30°C; Mg2Ni, 300 to 375°C; palladium, 0 to 70°C. A dual-temperature isotope separation process based on hydride chromatography was demonstrated. In this, a column was caused to cycle between two temperatures while being supplied with a constant stream of tritium-traced hydrogen. Each half-cycle was continued until ''breakthrough, '' i.e., until the tritium concentration in the effluent was the same as that in the feed. Up to that point, the effluent was enriched or depleted in tritium, by up to 20%.
Studying the interactions between heavy hydrogen isotopes and hydride forming metals or intermetallic compounds (IMC) is of importance for both fundamental and applied sciences. These systems offer, for example, the possibility of technical hydrogen isotope separation due to their considerable isotope effects. In addition, quite a lot of problems of hydrogen recovery, hydrogen purification, and tritium storage can be solved. This review deals with theoretical aspects of the interaction of heavy hydrogen isotopes with metals and IMC, and contains detailed information on phase and isotopic equilibrium and of the kinetics of isotope exchange in systems with hydride phases. Numerical data and results from theoretical and experimental studies are presented as well.
The separation of isotopes has always been a challenge because of their identical size, shape and thermodynamic properties. Nowadays, the extraction of deuterium is performed e.g. by the Girdler Sulfid process or cryogenic distillation, which lead to low separation factors (below 2.5) in combination with high energy costs. The standard way to produce helium-3 is to skim it as a byproduct of the radioactive tritium decay. In this thesis, two alternative approaches have been investigated for the separation of light isotopes, Quantum Sieving and Chemical Affinity Sieving . While Quantum Sieving is based on confinement in small pores, Chemical Affinity Sieving relies on strong adsorption sites. Both methods use the mass difference of the isotopes, which is related to their zero-point energy. The microporous metal-organic frameworks are excellent candidates for studying these quantum effects due to their well-defined pore structure and the possibility to introduce strong adsorption sites directly into the framework. The samples have been exposed to an isotope mixture and the adsorbed quantity of each isotope was detected by low-temperature thermal desorption spectroscopy (TDS). The ratio of the desorbed amount of the isotopes leads directly to the selectivity (separation factor). The selectivity is determined as a function of exposure time and temperature and exhibits the highest value of 25 observed for hydrogen isotopes at temperatures well above the boiling point of liquid nitrogen.
Intermetallic compounds with the CaCu.sub. 5 type of crystal structure, particularly LaNiCo.sub. 4 and CaNi.sub. 5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation colum. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale mutli-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors.