Download Free Gamma Ray Imaging Book in PDF and EPUB Free Download. You can read online Gamma Ray Imaging and write the review.

This book will provide readers with a good overview of some of the most recent advances in the field of detector technology for gamma-ray imaging, especially as it pertains to new applications. There will be a good mixture of general chapters in both technology and applications in medical imaging and industrial testing. The book will have an in-depth review of the research topics from world-leading specialists in the field. The conversion of the gamma-ray signal into analog/digital value will be covered in some chapters. Some would also provide a review of CMOS chips for gamma-ray image sensors.
The material in this volume was prepared and collected over the past four years with the growing realization that a technical revolution was in progress for diagnostic medicine. It became clear that for the wide variety of imaging instruments and methods finding their way into applications for research and clinical medicine, there was a scarcity of reference and text books for the scientist and engineer beginning in the field. Thus what began as a relatively small project for a single volume has grown into certainly two and probably three volumes to adequately cover the field. This first volume is expected to be followed within a few months by a second volume, dealing with diagnostic radiology, and within a year by a third volume, covering most other aspects of medicine that utilize spectra from the ultraviolet through the visible into the near-infrared. The chapters in this book are divided into three groups. The first group deals with nuclear medicine and includes Chapters 1-8. These chapters are arranged to begin with a broad introduction to the subject (Chapter 1) followed by a sequence of four chapters (Chapters 2-5) that provide an in-depth review of the imaging instrumentation developed for the field. Chapter 6 deals with "evaluation" of imaging device per formance, while Chapters 7 and 8 discuss two areas of considerable re search activity.
Comprehensive medical imaging physics notes aimed at those sitting the first FRCR physics exam in the UK and covering the scope of the Royal College of Radiologists syllabus. Written by Radiologists, the notes are concise and clearly organised with 100's of beautiful diagrams to aid understanding. The notes cover all of radiology physics, including basic science, x-ray imaging, CT, ultrasound, MRI, molecular imaging, and radiation dosimetry, protection and legislation. Although aimed at UK radiology trainees, it is also suitable for international residents taking similar examinations, postgraduate medical physics students and radiographers. The notes provide an excellent overview for anyone interested in the physics of radiology or just refreshing their knowledge. This third edition includes updates to reflect new legislation and many new illustrations, added sections, and removal of content no longer relevent to the FRCR physics exam. This edition has gone through strict critique and evaluation by physicists and other specialists to provide an accurate, understandable and up-to-date resource. The book summarises and pulls together content from the FRCR Physics Notes at Radiology Cafe and delivers it as a paperback or eBook for you to keep and read anytime. There are 7 main chapters, which are further subdivided into 60 sub-chapters so topics are easy to find. There is a comprehensive appendix and index at the back of the book.
In January 1990, the Department of Energy initiated this project with the objective to develop the technology for general purpose, portable gamma ray imaging cameras useful to the nuclear industry. The ultimate goal of this R D initiative is to develop the analog to the color television camera where the camera would respond to gamma rays instead of visible photons. The two-dimensional real-time image would be displayed would indicate the geometric location of the radiation relative to the camera's orientation, while the brightness and color'' would indicate the intensity and energy of the radiation (and hence identify the emitting isotope). There is a strong motivation for developing such a device for applications within the nuclear industry, for both high- and low-level waste repositories, for environmental restoration problems, and for space and fusion applications. At present, there are no general purpose radiation cameras capable of producing spectral images for such practical applications. At the time of this writing, work on this project has been underway for almost 18 months. Substantial progress has been made in the project's two primary areas: mechanically-collimated (MCC) and electronically-collimated camera (ECC) designs. We present developments covering the mechanically-collimated design, and then discuss the efforts on the electronically-collimated camera. The renewal proposal addresses the continuing R D efforts for the third year effort. 8 refs.
Gamma cameras are traditionally large devices that are situated in nuclear medicine departments, but recent advances in detector design have enabled the production of compact gamma cameras that allow nuclear imaging at the patient bedside and in the operating theatre. Gamma Cameras for Interventional and Intraoperative Imaging is the first book to cover this new area of imaging, and provides a unique insight into the experimental and clinical use of small field of view gamma cameras in hospitals. This book explores advances in the design and operation of compact gamma cameras and conducts a thorough review of current SFOV systems, before exploring the clinical applications of the technology. It is an essential reference for surgeons, operating theatre staff, clinical scientists (medical physicists), technologists, nuclear physicians and radiologists whose patients could benefit from this technology.
In January 1990, the Department of Energy initiated this project with the objective to develop the technology for general purpose, portable gamma ray imaging cameras useful to the nuclear industry. The ultimate goal of this R & D initiative is to develop the analog to the color television camera where the camera would respond to gamma rays instead of visible photons. The two-dimensional real-time image would be displayed would indicate the geometric location of the radiation relative to the camera's orientation, while the brightness and ''color'' would indicate the intensity and energy of the radiation (and hence identify the emitting isotope). There is a strong motivation for developing such a device for applications within the nuclear industry, for both high- and low-level waste repositories, for environmental restoration problems, and for space and fusion applications. At present, there are no general purpose radiation cameras capable of producing spectral images for such practical applications. At the time of this writing, work on this project has been underway for almost 18 months. Substantial progress has been made in the project's two primary areas: mechanically-collimated (MCC) and electronically-collimated camera (ECC) designs. We present developments covering the mechanically-collimated design, and then discuss the efforts on the electronically-collimated camera. The renewal proposal addresses the continuing R & D efforts for the third year effort. 8 refs.
Gamma-rays originate from the decay of excited states of the atomic nuclei in a similar manner as the visible light originates from the decay of the atom itself. Gamma rays belong to the class of ionizing radiation, together with alpha rays (doubly ionized atoms of helium) and beta rays (electrons). The spectroscopy of gamma rays, having the unique feature that by photo-effect transform their total energy to the energy of electrons in the detection material, contributed decisively to the establishing of the decay schemes of atomic nuclei. Strong sources of gamma radiation are widely used in contemporary technologies for cancer treatment, material modification, medical imaging, and food sterilization. The main goal of this book is to present to the non-specialist reader the contemporary applications of gamma rays by selected chapters on that issue. This book has 16 selected chapters from basic application of gamma rays to applied issues like food sterilization and polymer modification.
This open access book gives a complete and comprehensive introduction to the fields of medical imaging systems, as designed for a broad range of applications. The authors of the book first explain the foundations of system theory and image processing, before highlighting several modalities in a dedicated chapter. The initial focus is on modalities that are closely related to traditional camera systems such as endoscopy and microscopy. This is followed by more complex image formation processes: magnetic resonance imaging, X-ray projection imaging, computed tomography, X-ray phase-contrast imaging, nuclear imaging, ultrasound, and optical coherence tomography.