Download Free Game Theory Framework Applied To Wireless Communication Networks Book in PDF and EPUB Free Download. You can read online Game Theory Framework Applied To Wireless Communication Networks and write the review.

The popularity of smart phones and other mobile devices has brought about major expansion in the realm of wireless communications. With this growth comes the need to improve upon network capacity and overall user experience, and game-based methods can offer further enhancements in this area. Game Theory Framework Applied to Wireless Communication Networks is a pivotal reference source for the latest scholarly research on the application of game-theoretic approaches to enhance wireless networking. Featuring prevailing coverage on a range of topics relating to the advanced game model, mechanism designs, and effective equilibrium concepts, this publication is an essential reference source for researchers, students, technology developers, and engineers. This publication features extensive, research-based chapters across a broad scope of relevant topics, including potential games, coalition formation game, heterogeneous networks, radio resource allocation, coverage optimization, distributed dynamic resource allocation, dynamic spectrum access, physical layer security, and cooperative video transmission.
Used to explain complicated economic behavior for decades, game theory is quickly becoming a tool of choice for those serious about optimizing next generation wireless systems. Illustrating how game theory can effectively address a wide range of issues that until now remained unresolved, Game Theory for Wireless Communications and Networking provides a systematic introduction to the application of this powerful and dynamic tool. This comprehensive technical guide explains game theory basics, architectures, protocols, security, models, open research issues, and cutting-edge advances and applications. It describes how to employ game theory in infrastructure-based wireless networks and multihop networks to reduce power consumption—while improving system capacity, decreasing packet loss, and enhancing network resilience. Providing for complete cross-referencing, the text is organized into four parts: Fundamentals—introduces the fundamental issues and solutions in applying different games in different wireless domains, including wireless sensor networks, vehicular networks, and OFDM-based wireless systems Power Control Games—considers issues and solutions in power control games Economic Approaches—reviews applications of different economic approaches, including bargaining and auction-based approaches Resource Management—explores how to use the game theoretic approach to address radio resource management issues The book explains how to apply the game theoretic model to address specific issues, including resource allocation, congestion control, attacks, routing, energy management, packet forwarding, and MAC. Facilitating quick and easy reference to related optimization and algorithm methodologies, it supplies you with the background and tools required to use game theory to drive the improvement and development of next generation wireless systems.
This unified 2001 treatment of game theory focuses on finding state-of-the-art solutions to issues surrounding the next generation of wireless and communications networks. The key results and tools of game theory are covered, as are various real-world technologies and a wide range of techniques for modeling, design and analysis.
A unified treatment of the latest game theoretic approaches for designing, modeling, and optimizing emerging wireless communication networks. Covering theory, analytical tools, and applications, it is ideal for researchers and graduate students in academia and industry designing efficient, scalable and robust protocols for future wireless networks.
This unified treatment of game theory focuses on finding state-of-the-art solutions to issues surrounding the next generation of wireless and communications networks. Future networks will rely on autonomous and distributed architectures to improve the efficiency and flexibility of mobile applications, and game theory provides the ideal framework for designing efficient and robust distributed algorithms. This 2001 book enables readers to develop a solid understanding of game theory, its applications and its use as an effective tool for addressing wireless communication and networking problems. The key results and tools of game theory are covered, as are various real-world technologies including 3G networks, wireless LANs, sensor networks, dynamic spectrum access and cognitive networks. The book also covers a wide range of techniques for modeling, designing and analysing communication networks using game theory, as well as state-of-the-art distributed design techniques. This is an ideal resource for communications engineers, researchers, and graduate and undergraduate students.
The application of mathematical analysis to wireless networks has met with limited success, due to the complexity of mobility and traffic models, coupled with the dynamic topology and the unpredictability of link quality that characterize such networks. The ability to model individual, independent decision makers whose actions potentially affect all other decision makers makes game theory particularly attractive to analyze the performance of ad hoc networks. Game theory is a field of applied mathematics that describes and analyzes interactive decision situations. It consists of a set of analytical tools that predict the outcome of complex interactions among rational entities, where rationality demands a strict adherence to a strategy based on perceived or measured results. In the early to mid-1990's, game theory was applied to networking problems including flow control, congestion control, routing and pricing of Internet services. More recently, there has been growing interest in adopting game-theoretic methods to model today's leading communications and networking issues, including power control and resource sharing in wireless and peer-to-peer networks. This work presents fundamental results in game theory and their application to wireless communications and networking. We discuss normal-form, repeated, and Markov games with examples selected from the literature. We also describe ways in which learning can be modeled in game theory, with direct applications to the emerging field of cognitive radio. Finally, we discuss challenges and limitations in the application of game theory to the analysis of wireless systems. We do not assume familiarity with game theory. We introduce major game theoretic models and discuss applications of game theory including medium access, routing, energy-efficient protocols, and others. We seek to provide the reader with a foundational understanding of the current research on game theory applied to wireless communications and networking.
This unified treatment of game theory focuses on finding state-of-the-art solutions to issues surrounding the next generation of wireless and communications networks. Future networks will rely on autonomous and distributed architectures to improve the efficiency and flexibility of mobile applications, and game theory provides the ideal framework for designing efficient and robust distributed algorithms. This book enables readers to develop a solid understanding of game theory, its applications and its use as an effective tool for addressing wireless communication and networking problems. The key results and tools of game theory are covered, as are various real-world technologies including 3G networks, wireless LANs, sensor networks, dynamic spectrum access and cognitive networks. The book also covers a wide range of techniques for modeling, designing and analysing communication networks using game theory, as well as state-of-the-art distributed design techniques. This is an ideal resource for communications engineers, researchers, and graduate and undergraduate students.
The application of mathematical analysis to wireless networks has met with limited success, due to the complexity of mobility and traffic models, coupled with the dynamic topology and the unpredictability of link quality that characterize such networks. The ability to model individual, independent decision makers whose actions potentially affect all other decision makers makes game theory particularly attractive to analyze the performance of ad hoc networks. Game theory is a field of applied mathematics that describes and analyzes interactive decision situations. It consists of a set of analytical tools that predict the outcome of complex interactions among rational entities, where rationality demands a strict adherence to a strategy based on perceived or measured results. In the early to mid-1990's, game theory was applied to networking problems including flow control, congestion control, routing and pricing of Internet services. More recently, there has been growing interest in adopting game-theoretic methods to model today's leading communications and networking issues, including power control and resource sharing in wireless and peer-to-peer networks. This work presents fundamental results in game theory and their application to wireless communications and networking. We discuss normal-form, repeated, and Markov games with examples selected from the literature. We also describe ways in which learning can be modeled in game theory, with direct applications to the emerging field of cognitive radio. Finally, we discuss challenges and limitations in the application of game theory to the analysis of wireless systems. We do not assume familiarity with game theory. We introduce major game theoretic models and discuss applications of game theory including medium access, routing, energy-efficient protocols, and others. We seek to provide the reader with a foundational understanding of the current research on game theory applied to wireless communications and networking.
There is an enhanced level of connectivity available in modern society through the increased usage of various technological devices. Such developments have led to the integration of smart objects into the Internet of Things (IoT), an emerging paradigm in the digital age. Game Theory Solutions for the Internet of Things: Emerging Research and Opportunities examines the latest strategies for the management of IoT systems and the application of theoretical models to enhance real-world applications and improve system efficiency. Highlighting innovative algorithms and methods, as well as coverage on cloud computing, cross-domain applications, and energy control, this book is a pivotal source of information for researchers, practitioners, graduate students, professionals, and academics interested in the game theoretic solutions for IoT applications.