Download Free Game Theory For Wireless Communications And Networking Book in PDF and EPUB Free Download. You can read online Game Theory For Wireless Communications And Networking and write the review.

This unified 2001 treatment of game theory focuses on finding state-of-the-art solutions to issues surrounding the next generation of wireless and communications networks. The key results and tools of game theory are covered, as are various real-world technologies and a wide range of techniques for modeling, design and analysis.
A unified treatment of the latest game theoretic approaches for designing, modeling, and optimizing emerging wireless communication networks. Covering theory, analytical tools, and applications, it is ideal for researchers and graduate students in academia and industry designing efficient, scalable and robust protocols for future wireless networks.
Focusing on heterogeneous networks, this book addresses important resource management and security issues found in networks and uses theoretical tools to model them. Although it explores network design and management from the perspective of game theory and graph theory, the text also provides practical solutions for each mechanism that needs improvement with a step-by-step approach. It also includes simulation code, so readers can use some or all of the proposed models for better network planning.
The application of mathematical analysis to wireless networks has met with limited success, due to the complexity of mobility and traffic models, coupled with the dynamic topology and the unpredictability of link quality that characterize such networks. The ability to model individual, independent decision makers whose actions potentially affect all other decision makers makes game theory particularly attractive to analyze the performance of ad hoc networks. Game theory is a field of applied mathematics that describes and analyzes interactive decision situations. It consists of a set of analytical tools that predict the outcome of complex interactions among rational entities, where rationality demands a strict adherence to a strategy based on perceived or measured results. In the early to mid-1990's, game theory was applied to networking problems including flow control, congestion control, routing and pricing of Internet services. More recently, there has been growing interest in adopting game-theoretic methods to model today's leading communications and networking issues, including power control and resource sharing in wireless and peer-to-peer networks. This work presents fundamental results in game theory and their application to wireless communications and networking. We discuss normal-form, repeated, and Markov games with examples selected from the literature. We also describe ways in which learning can be modeled in game theory, with direct applications to the emerging field of cognitive radio. Finally, we discuss challenges and limitations in the application of game theory to the analysis of wireless systems. We do not assume familiarity with game theory. We introduce major game theoretic models and discuss applications of game theory including medium access, routing, energy-efficient protocols, and others. We seek to provide the reader with a foundational understanding of the current research on game theory applied to wireless communications and networking.
With the rapid growth of new wireless devices and applications over the past decade, the demand for wireless radio spectrum is increasing relentlessly. The development of cognitive radio networking provides a framework for making the best possible use of limited spectrum resources, and it is revolutionising the telecommunications industry. This book presents the fundamentals of designing, implementing, and deploying cognitive radio communication and networking systems. Uniquely, it focuses on game theory and its applications to various aspects of cognitive networking. It covers in detail the core aspects of cognitive radio, including cooperation, situational awareness, learning, and security mechanisms and strategies. In addition, it provides novel, state-of-the-art concepts and recent results. This is an ideal reference for researchers, students and professionals in industry who need to learn the applications of game theory to cognitive networking.
This book offers a thorough examination of potential game theory and its applications in radio resource management for wireless communications systems and networking. The book addresses two major research goals: how to identify a given game as a potential game, and how to design the utility functions and the potential functions with certain special properties in order to formulate a potential game. After proposing a unifying mathematical framework for the identification of potential games, the text surveys existing applications of this technique within wireless communications and networking problems found in OFDMA 3G/4G/WiFi networks, as well as next-generation systems such as cognitive radios and dynamic spectrum access networks. Professionals interested in understanding the theoretical aspect of this specialized field will find Potential Game Theory a valuable resource, as will advanced-level engineering students. It paves the way for extensive and rigorous research exploration on a topic whose capacity for practical applications is vast but not yet fully exploited.
This book provides the fundamental knowledge of the classical matching theory problems. It builds up the bridge between the matching theory and the 5G wireless communication resource allocation problems. The potentials and challenges of implementing the semi-distributive matching theory framework into the wireless resource allocations are analyzed both theoretically and through implementation examples. Academics, researchers, engineers, and so on, who are interested in efficient distributive wireless resource allocation solutions, will find this book to be an exceptional resource.
Physical Layer Security in Wireless Communications supplies a systematic overview of the basic concepts, recent advancements, and open issues in providing communication security at the physical layer. It introduces the key concepts, design issues, and solutions to physical layer security in single-user and multi-user communication systems, as well as large-scale wireless networks. Presenting high-level discussions along with specific examples, and illustrations, this is an ideal reference for anyone that needs to obtain a macro-level understanding of physical layer security and its role in future wireless communication systems.
The use of game theoretic techniques is playing an increasingly important role in the network design domain. Understanding the background, concepts, and principles in using game theory approaches is necessary for engineers in network design. Game Theory Applications in Network Design provides the basic idea of game theory and the fundamental understanding of game theoretic interactions among network entities. The material in this book also covers recent advances and open issues, offering game theoretic solutions for specific network design issues. This publication will benefit students, educators, research strategists, scientists, researchers, and engineers in the field of network design.