Download Free Gallium Arsenide Digital Integrated Circuits Book in PDF and EPUB Free Download. You can read online Gallium Arsenide Digital Integrated Circuits and write the review.

Gallium Arsenide technology has come of age. GaAs integrated circuits are available today as gate arrays with an operating speed in excess of one Gigabits per second. Special purpose GaAs circuits are used in optical fiber digital communications systems for the purpose of regeneration, multiplexing and switching of the optical signals. As advances in fabrication and packaging techniques are made, the operat ing speed will further increase and the cost of production will reach a point where large scale application of GaAs circuits will be economical in these and other systems where speed is paramount. This book is written for students and engineers who wish to enter into this new field of electronics for the first time and who wish to embark on a serious study of the subject of GaAs circuit design. No prior knowledge of GaAs technology is assumed though some previous experience with MOS circuit design will be helpful. A good part of the book is devoted to circuit analysis, to the extent that is possible for non linear circuits. The circuit model of the GaAs transistor is derived from first principles and analytic formulas useful in predicting the approxi mate circuit performance are also derived. Computer simulation is used throughout the book to show the expected performance and to study the effects of parameter variations.
Gallium Arsenide IC Applications Handbook is the first text to offer a comprehensive treatment of Gallium Arsenide (GaAs) integrated chip (IC) applications, specifically in microwave systems. The books coverage of GaAs in microwave monolithic ICs demonstrates why GaAs is being hailed as a material of the future for the various advantages it holds over silicon. This volume provides scientists, physicists, electrical engineers, and technology professionals and managers working on microwave technology with practical information on GaAs applications in radar, electronic warfare, communications, consumer electronics, automotive electronics and traffic control. Includes an executive summary in each volume and chapter Facilitates comprehension with its tutorial writing style Covers key technical issues Emphasizes practical aspects of the technology Contains minimal mathematics Provides a complete reference list
GaAs devices and integrated circuits have emerged as leading contenders for ultra-high-speed applications. This book is intended to be a reference for a rapidly growing GaAs community of researchers and graduate students. It was written over several years and parts of it were used for courses on GaAs devices and integrated circuits and on heterojunction GaAs devices developed and taught at the University of Minnesota. Many people helped me in writing this book. I would like to express my deep gratitude to Professor Lester Eastman of Cornell University, whose ideas and thoughts inspired me and helped to determine the direction of my research work for many years. I also benefited from numerous discussions with his students and associates and from the very atmosphere of the pursuit of excellence which exists in his group. I would like to thank my former and present co-workers and colleagues-Drs. Levinstein and Gelmont of the A. F. Ioffe Institute of Physics and Technology, Professor Melvin Shaw of Wayne State University, Dr. Kastalsky of Bell Communi cations, Professor Gary Robinson of Colorado State University, Professor Tony Valois, and Dr. Tim Drummond of Sandia Labs-for their contributions to our joint research and for valuable discussions. My special thanks to Professor Morko.;, for his help, his ideas, and the example set by his pioneering work. Since 1978 I have been working with engineers from Honeywell, Inc.-Drs.
Very Good,No Highlights or Markup,all pages are intact.
The performance of high-speed semiconductor devices—the genius driving digital computers, advanced electronic systems for digital signal processing, telecommunication systems, and optoelectronics—is inextricably linked to the unique physical and electrical properties of gallium arsenide. Once viewed as a novel alternative to silicon, gallium arsenide has swiftly moved into the forefront of the leading high-tech industries as an irreplaceable material in component fabrication. GaAs High-Speed Devices provides a comprehensive, state-of-the-science look at the phenomenally expansive range of engineering devices gallium arsenide has made possible—as well as the fabrication methods, operating principles, device models, novel device designs, and the material properties and physics of GaAs that are so keenly integral to their success. In a clear five-part format, the book systematically examines each of these aspects of GaAs device technology, forming the first authoritative study to consider so many important aspects at once and in such detail. Beginning with chapter 2 of part one, the book discusses such basic subjects as gallium arsenide materials and crystal properties, electron energy band structures, hole and electron transport, crystal growth of GaAs from the melt and defect density analysis. Part two describes the fabrication process of gallium arsenide devices and integrated circuits, shedding light, in chapter 3, on epitaxial growth processes, molecular beam epitaxy, and metal organic chemical vapor deposition techniques. Chapter 4 provides an introduction to wafer cleaning techniques and environment control, wet etching methods and chemicals, and dry etching systems, including reactive ion etching, focused ion beam, and laser assisted methods. Chapter 5 provides a clear overview of photolithography and nonoptical lithography techniques that include electron beam, x-ray, and ion beam lithography systems. The advances in fabrication techniques described in previous chapters necessitate an examination of low-dimension device physics, which is carried on in detail in chapter 6 of part three. Part four includes a discussion of innovative device design and operating principles which deepens and elaborates the ideas introduced in chapter 1. Key areas such as metal-semiconductor contact systems, Schottky Barrier and ohmic contact formation and reliability studies are examined in chapter 7. A detailed discussion of metal semiconductor field-effect transistors, the fabrication technology, and models and parameter extraction for device analyses occurs in chapter 8. The fifth part of the book progresses to an up-to-date discussion of heterostructure field-effect (HEMT in chapter 9), potential-effect (HBT in chapter 10), and quantum-effect devices (chapters 11 and 12), all of which are certain to have a major impact on high-speed integrated circuits and optoelectronic integrated circuit (OEIC) applications. Every facet of GaAs device technology is placed firmly in a historical context, allowing readers to see instantly the significant developmental changes that have shaped it. Featuring a look at devices still under development and device structures not yet found in the literature, GaAs High-Speed Devices also provides a valuable glimpse into the newest innovations at the center of the latest GaAs technology. An essential text for electrical engineers, materials scientists, physicists, and students, GaAs High-Speed Devices offers the first comprehensive and up-to-date look at these formidable 21st century tools. The unique physical and electrical properties of gallium arsenide has revolutionized the hardware essential to digital computers, advanced electronic systems for digital signal processing, telecommunication systems, and optoelectronics. GaAs High-Speed Devices provides the first fully comprehensive look at the enormous range of engineering devices gallium arsenide has made possible as well as the backbone of the technology—ication methods, operating principles, and the materials properties and physics of GaAs—device models and novel device designs. Featuring a clear, six-part format, the book covers: GaAs materials and crystal properties Fabrication processes of GaAs devices and integrated circuits Electron beam, x-ray, and ion beam lithography systems Metal-semiconductor contact systems Heterostructure field-effect, potential-effect, and quantum-effect devices GaAs Microwave Monolithic Integrated Circuits and Digital Integrated Circuits In addition, this comprehensive volume places every facet of the technology in an historical context and gives readers an unusual glimpse at devices still under development and device structures not yet found in the literature.
Analogue IC Design has become the essential title covering the current-mode approach to integrated circuit design. The approach has sparked much interest in analogue electronics and is linked to important advances in integrated circuit technology, such as CMOS VLSI which allows mixed analogue and digital circuits and high-speed GaAs processing.
The impact of digital integrated circuits on our modern society has been pervasive. They are the enabling technology of the current computer and information-technology revolution. This is largely true because of the immense amount of signal and computer processing that can be realized in a single integrated circuit; modern IC's may contain millions of logic gates. This text book is intended to take a reader having only a minimal background and knowledge in electronics to the point where they can design state-of-the-art digital integrated circuits. Designing high-performance digital integrated circuits requires expertise in many different areas. These include semiconductor physics, integrated circuit processing, transistor-level design, logic-level design, system-level design, testing, etc. Aspects of these topics are covered throughout this text, although the emphasis is on transistor-level design of digital integrated circuits and systems. This is in contrast to the perspective in many other texts, which takes a system-level or VLSI approach where transistor-level details are minimized. It is the author's belief that before system-level considerations can be properly evaluated, an in-depth tranisistor-level understanding must first be obtained. Important system-level considerations such as timing, pipe-lining, clock distribution, and system building blocks are covered in detail, but the emphasis on transistors first. Throughout the book, physical and intuitive explanations are given, and although mathematical quantitative analysis of many circuits have necessarily been presented, Martin has attempted not to "miss seeing the forest because of the trees". This book presents the critical underlying concepts without becoming entangled in tedious and over-complicated circuit analyses. It is intended for senior/graduate level students in electrical and computer engineering. This course assumes the Sedra/Smith Microelectronic Circuits course as a prerequisite.
Exponential improvement in functionality and performance of digital integrated circuits has revolutionized the way we live and work. The continued scaling down of MOS transistors has broadened the scope of use for circuit technology to the point that texts on the topic are generally lacking after a few years. The second edition of Digital Integrated Circuits: Analysis and Design focuses on timeless principles with a modern interdisciplinary view that will serve integrated circuits engineers from all disciplines for years to come. Providing a revised instructional reference for engineers involved with Very Large Scale Integrated Circuit design and fabrication, this book delves into the dramatic advances in the field, including new applications and changes in the physics of operation made possible by relentless miniaturization. This book was conceived in the versatile spirit of the field to bridge a void that had existed between books on transistor electronics and those covering VLSI design and fabrication as a separate topic. Like the first edition, this volume is a crucial link for integrated circuit engineers and those studying the field, supplying the cross-disciplinary connections they require for guidance in more advanced work. For pedagogical reasons, the author uses SPICE level 1 computer simulation models but introduces BSIM models that are indispensable for VLSI design. This enables users to develop a strong and intuitive sense of device and circuit design by drawing direct connections between the hand analysis and the SPICE models. With four new chapters, more than 200 new illustrations, numerous worked examples, case studies, and support provided on a dynamic website, this text significantly expands concepts presented in the first edition.