Download Free Fuzzy Techniques In Operations Research Book in PDF and EPUB Free Download. You can read online Fuzzy Techniques In Operations Research and write the review.

Fuzzy Sets in Decision Analysis, Operations Research and Statistics includes chapters on fuzzy preference modeling, multiple criteria analysis, ranking and sorting methods, group decision-making and fuzzy game theory. It also presents optimization techniques such as fuzzy linear and non-linear programming, applications to graph problems and fuzzy combinatorial methods such as fuzzy dynamic programming. In addition, the book also accounts for advances in fuzzy data analysis, fuzzy statistics, and applications to reliability analysis. These topics are covered within four parts: Decision Making, Mathematical Programming, Statistics and Data Analysis, and Reliability, Maintenance and Replacement. The scope and content of the book has resulted from multiple interactions between the editor of the volume, the series editors, the series advisory board, and experts in each chapter area. Each chapter was written by a well-known researcher on the topic and reviewed by other experts in the area. These expert reviewers sometimes became co-authors because of the extent of their contribution to the chapter. As a result, twenty-five authors from twelve countries and four continents were involved in the creation of the 13 chapters, which enhances the international character of the project and gives an idea of how carefully the Handbook has been developed.
This book presents the necessary and essential backgrounds of fuzzy set theory and linear programming, particularly a broad range of common Fuzzy Linear Programming (FLP) models and related, convenient solution techniques. These models and methods belong to three common classes of fuzzy linear programming, namely: (i) FLP problems in which all coefficients are fuzzy numbers, (ii) FLP problems in which the right-hand-side vectors and the decision variables are fuzzy numbers, and (iii) FLP problems in which the cost coefficients, the right-hand-side vectors and the decision variables are fuzzy numbers. The book essentially generalizes the well-known solution algorithms used in linear programming to the fuzzy environment. Accordingly, it can be used not only as a textbook, teaching material or reference book for undergraduate and graduate students in courses on applied mathematics, computer science, management science, industrial engineering, artificial intelligence, fuzzy information processes, and operations research, but can also serve as a reference book for researchers in these fields, especially those engaged in optimization and soft computing. For textbook purposes, it also includes simple and illustrative examples to help readers who are new to the field.
Since the late 1980s, a large number of very user-friendly tools for fuzzy control, fuzzy expert systems, and fuzzy data analysis have emerged. This has changed the character of this area and started the area of `fuzzy technology'. The next large step in the development occurred in 1992 when almost independently in Europe, Japan and the USA, the three areas of fuzzy technology, artificial neural nets and genetic algorithms joined forces under the title of `computational intelligence' or `soft computing'. The synergies which were possible between these three areas have been exploited very successfully. Practical Applications of Fuzzy Sets focuses on model and real applications of fuzzy sets, and is structured into four major parts: engineering and natural sciences; medicine; management; and behavioral, cognitive and social sciences. This book will be useful for practitioners of fuzzy technology, scientists and students who are looking for applications of their models and methods, for topics of their theses, and even for venture capitalists who look for attractive possibilities for investments.
After developing fuzzy set theory, many contributors focused their research on the extension of fuzzy sets and their computational methodologies, strengthening modern science and technology. In some real-life phenomena, the conventional methods and traditional fuzzy sets cannot be explained, whereas the extension of fuzzy sets and effective new computing methods can explain it adequately. This edited book presents a new view of fuzzy set-measurement methods entitled "Fuzzy Optimization, Decision Making and Operations Research: Theory and Applications", which deals with different perspectives and areas of research. All chapters are divided into three parts: fuzzy optimization, fuzzy decision-making, and fuzzy operation research. The goal of this book is to provide a relevant methodological framework covering the core fields of fuzzy decision-making method, fuzzy optimization method, fuzzy graphics method, fuzzy operations research, fuzzy optimization using graph theory, fuzzy support systems and its real and industrial applications. For many people, fuzzy words' industrial engineering and scientific meanings are still an advanced system for improving modern science and technology. Although fuzzy logic can be applied to many different areas, people do not know how different fuzzy approaches can be applied to various products currently on the market. It is written for professionals who wish to share their expertise, improve their findings, and provide relevant information in the fields of fuzzy methods and their application in decision-making, optimization theory, graph theory and operations research. This book is aimed at experts and practitioners in the fields of fuzzy optimization, fuzzy decision-making, and fuzzy operation research.
Fuzzy logic techniques have had extraordinary growth in various engineering systems. The developments in engineering sciences have caused apprehension in modern years due to high-tech industrial processes with ever-increasing levels of complexity. Advanced Fuzzy Logic Approaches in Engineering Science provides innovative insights into a comprehensive range of soft fuzzy logic techniques applied in various fields of engineering problems like fuzzy sets theory, adaptive neuro fuzzy inference system, and hybrid fuzzy logic genetic algorithms belief networks in industrial and engineering settings. The content within this publication represents the work of particle swarms, fuzzy computing, and rough sets. It is a vital reference source for engineers, research scientists, academicians, and graduate-level students seeking coverage on topics centered on the applications of fuzzy logic in high-tech industrial processes.
In the last 25 years, the fuzzy set theory has been applied in many disciplines such as operations research, management science, control theory,artificial intelligence/expert system, etc. In this volume, methods and applications of fuzzy mathematical programming and possibilistic mathematical programming are first systematically and thoroughly reviewed and classified. This state-of-the-art survey provides readers with a capsule look into the existing methods, and their characteristics and applicability to analysis of fuzzy and possibilistic programming problems. To realize practical fuzzy modelling, we present solutions for real-world problems including production/manufacturing, transportation, assignment, game, environmental management, resource allocation, project investment, banking/finance, and agricultural economics. To improve flexibility and robustness of fuzzy mathematical programming techniques, we also present our expert decision-making support system IFLP which considers and solves all possibilities of a specific domain of (fuzzy) linear programming problems. Basic fuzzy set theories, membership functions, fuzzy decisions, operators and fuzzy arithmetic are introduced with simple numerical examples in aneasy-to-read and easy-to-follow manner. An updated bibliographical listing of 60 books, monographs or conference proceedings, and about 300 selected papers, reports or theses is presented in the end of this study.
This book presents the latest advances in applying fuzzy sets and operations research technology and methods. It is the first fuzzy mathematics textbook for students in high school and technical secondary schools. Part of Springer’s book series: Advances in Intelligent and Soft Computing, it includes the 36 best papers from the Ninth International Conference on Fuzzy Information and Engineering (ICFIE2017), organized by the Fuzzy Information and Engineering Branch of Operations Research Society of China and Operations Research Society of Guangdong Province in China. Every paper has been carefully peer-reviewed by leading experts. The areas covered include 1. Fuzzy Measure and Integral; 2. Fuzzy Topology and Algebras; 3. Classification and Recognition; 4. Control and Fuzziness; 5. Extension of Fuzzy Set and System; 6. Operations Research and Management (OR); The book is suitable for college, masters and doctoral students; educators in universities, colleges, middle and primary schools teaching mathematics, fuzzy sets and systems, operations research, information and engineering, as well as management, control. Discussing case applications, it is also a valuable reference resource for professionals interested in theoretical and practical research.
This book provides readers with a timely and comprehensive yet concise view on the field of fuzzy logic and its real-world applications. The chapters, written by authoritative scholars in the field, report on promising new models for data analysis, decision making, and systems modeling, with a special emphasis on their applications in management science. The book is a token of appreciation from the fuzzy research community to Professor Christer Carlsson for his long time research and organizational commitment, which have among other things resulted in the foundation and success of the Institute for Advanced Management Systems Research (IAMSR) at Åbo Akademi University, in Åbo (Turku), Finland. The book serves as timely guide for the fuzzy logic and operations research communities alike.
“Fuzzy Engineering and Operations Research” is the edited outcome of the 5th International Conference on Fuzzy Information and Engineering (ICFIE2011) held during Oct. 15-17, 2011 in Chengdu, China and by the 1st academic conference in establishment of Guangdong Province Operations Research Society (GDORSC) held on Oct. 20, 2011 in Guangzhou, China. The 5th ICFIE2011, built on the success of previous conferences, and the GDORC, first held, are major Symposiums, respectively, for scientists, engineers practitioners and Operation Research (OR) researchers presenting their updated results, developments and applications in all areas of fuzzy information and engineering and OR. It aims to strengthen relations between industry research laboratories and universities, and to create a primary symposium for world scientists in Fuzziology and OR fields. The book contains 62 papers and is divided into five main parts: “Fuzzy Optimization, Logic and Information”, “The mathematical Theory of Fuzzy Systems”, “Fuzzy Engineering Applications and Soft Computing Methods”, “OR and Fuzziology” and “Guess and Review”.
Decision-making is an important task no matter the industry. Operations research, as a discipline, helps alleviate decision-making problems through the extraction of reliable information related to the task at hand in order to come to a viable solution. Integrating stochastic processes into operations research and management can further aid in the decision-making process for industrial and management problems. Stochastic Processes and Models in Operations Research emphasizes mathematical tools and equations relevant for solving complex problems within business and industrial settings. This research-based publication aims to assist scholars, researchers, operations managers, and graduate-level students by providing comprehensive exposure to the concepts, trends, and technologies relevant to stochastic process modeling to solve operations research problems.