Download Free Fuzzy Systems To Quantum Mechanics Book in PDF and EPUB Free Download. You can read online Fuzzy Systems To Quantum Mechanics and write the review.

This unique compendium represents important action of fuzzy systems to quantum mechanics. From fuzzy sets to fuzzy systems, it also gives clear descriptions on the development on fuzzy logic, where the most important result is the probability presentation of fuzzy systems.The important conclusions on fuzzy systems are used in the study of quantum mechanics, which is a very new idea. Eight important conclusions are obtained. The author has proved that mass-point motions in classical mechanics must have waves, which means that any mass-point motion in classical mechanics has wave mass-point dualism as well as any microscopic particle motion must have wave-particle dualism. Based on this conclusion, it has been proven that classical mechanics and quantum mechanics are unified.
In our new century, the theory of fuzzy sets and systems is in the core of "Soft Computing" and "Computational Intelligence" and has become a normal scientific theory in the fields of exact sciences and engineering and it is well on its way to becoming normal in the soft sciences as well. This book is a collection of the views of numerous scholars in different parts of the world who are involved in various research projects concerning fuzziness in science, technology, economic systems, social sciences, logics and philosophy. This volume demonstrates that there are many different views of the theory of fuzzy sets and systems and of their interpretation and applications in diverse areas of our cultural and social life.
Today, Fuzzy Set Theory is the core discipline of so-called ‘soft’ computing, and provides new impetus for research in the field of artificial intelligence. In this fascinating book, the history of Fuzzy Set Theory and the ways it was first used are incorporated into the history of 20th century science and technology. Influences from philosophy, system theory and cybernetics stemming from the earliest part of the 20th century are considered alongside those of communication and control theory from mid-century.
What is fuzzy logic?--a system of concepts and methods for exploring modes of reasoning that are approximate rather than exact. While the engineering community has appreciated the advances in understanding using fuzzy logic for quite some time, fuzzy logic's impact in non-engineering disciplines is only now being recognized. The authors of Fuzzy Logic in Geology attend to this growing interest in the subject and introduce the use of fuzzy set theory in a style geoscientists can understand. This is followed by individual chapters on topics relevant to earth scientists: sediment modeling, fracture detection, reservoir characterization, clustering in geophysical data analysis, ground water movement, and time series analysis.George Klir is the Distinguished Professor of Systems Science and Director of the Center for Intelligent Systems, Fellow of the IEEE and IFSA, editor of nine volumes, editorial board member of 18 journals, and author or co-author of 16 booksForeword by the inventor of fuzzy logic-- Professor Lotfi Zadeh
The 1960s were perhaps a decade of confusion, when scientists faced d- culties in dealing with imprecise information and complex dynamics. A new set theory and then an in?nite-valued logic of Lot? A. Zadeh were so c- fusing that they were called fuzzy set theory and fuzzy logic; a deterministic system found by E. N. Lorenz to have random behaviours was so unusual that it was lately named a chaotic system. Just like irrational and imaginary numbers, negative energy, anti-matter, etc., fuzzy logic and chaos were gr- ually and eventually accepted by many, if not all, scientists and engineers as fundamental concepts, theories, as well as technologies. In particular, fuzzy systems technology has achieved its maturity with widespread applications in many industrial, commercial, and technical ?elds, ranging from control, automation, and arti?cial intelligence to image/signal processing,patternrecognition,andelectroniccommerce.Chaos,ontheother hand,wasconsideredoneofthethreemonumentaldiscoveriesofthetwentieth century together with the theory of relativity and quantum mechanics. As a very special nonlinear dynamical phenomenon, chaos has reached its current outstanding status from being merely a scienti?c curiosity in the mid-1960s to an applicable technology in the late 1990s. Finding the intrinsic relation between fuzzy logic and chaos theory is certainlyofsigni?cantinterestandofpotentialimportance.Thepast20years have indeed witnessed some serious explorations of the interactions between fuzzylogicandchaostheory,leadingtosuchresearchtopicsasfuzzymodeling of chaotic systems using Takagi–Sugeno models, linguistic descriptions of chaotic systems, fuzzy control of chaos, and a combination of fuzzy control technology and chaos theory for various engineering practices.
Neural Fuzzy Systems provides a comprehensive, up-to-date introduction to the basic theories of fuzzy systems and neural networks, as well as an exploration of how these two fields can be integrated to create Neural-Fuzzy Systems. It includes Matlab software, with a Neural Network Toolkit, and a Fuzzy System Toolkit.
Research on applying principles of quantum computing to improve the engineering of intelligent systems has been launched since late 1990s. This emergent research field concentrates on studying on quantum computing that is characterized by certain principles of quantum mechanics such as standing waves, interference, quantum bits, coherence, superposition of states, and concept of interference, combined with computational intelligence or soft computing approaches, such as artificial neural networks, fuzzy systems, evolutionary computing, swarm intelligence and hybrid soft computing methods. This volume offers a wide spectrum of research work developed using soft computing combined with quantum computing systems.
The main part of the book is a comprehensive overview of the development of fuzzy logic and its applications in various areas of human affair since its genesis in the mid 1960s. This overview is then employed for assessing the significance of fuzzy logic and mathematics based on fuzzy logic.
"Is quantum logic really logic?" This book argues for a positive answer to this question once and for all. There are many quantum logics and their structures are delightfully varied. The most radical aspect of quantum reasoning is reflected in unsharp quantum logics, a special heterodox branch of fuzzy thinking. For the first time, the whole story of Quantum Logic is told; from its beginnings to the most recent logical investigations of various types of quantum phenomena, including quantum computation. Reasoning in Quantum Theory is designed for logicians, yet amenable to advanced graduate students and researchers of other disciplines.