Download Free Fuzzy Systems Engineering Book in PDF and EPUB Free Download. You can read online Fuzzy Systems Engineering and write the review.

This book is devoted to reporting innovative and significant progress in fuzzy system engineering. Given the maturation of fuzzy logic, this book is dedicated to exploring the recent breakthroughs in fuzziness and soft computing in favour of intelligent system engineering. This monograph presents novel developments of the fuzzy theory as well as interesting applications of the fuzzy logic exploiting the theory to engineer intelligent systems.
A self-contained treatment of fuzzy systems engineering, offering conceptual fundamentals, design methodologies, development guidelines, and carefully selected illustrative material Forty years have passed since the birth of fuzzy sets, in which time a wealth of theoretical developments, conceptual pursuits, algorithmic environments, and other applications have emerged. Now, this reader-friendly book presents an up-to-date approach to fuzzy systems engineering, covering concepts, design methodologies, and algorithms coupled with interpretation, analysis, and underlying engineering knowledge. The result is a holistic view of fuzzy sets as a fundamental component of computational intelligence and human-centric systems. Throughout the book, the authors emphasize the direct applicability and limitations of the concepts being discussed, and historical and bibliographical notes are included in each chapter to help readers view the developments of fuzzy sets from a broader perspective. A radical departure from current books on the subject, Fuzzy Systems Engineering presents fuzzy sets as an enabling technology whose impact, contributions, and methodology stretch far beyond any specific discipline, making it applicable to researchers and practitioners in engineering, computer science, business, medicine, bioinformatics, and computational biology. Additionally, three appendices and classroom-ready electronic resources make it an ideal textbook for advanced undergraduate- and graduate-level courses in engineering and science.
The concept of fuzzy sets is one of the most fundamental and influential tools in computational intelligence. Fuzzy sets can provide solutions to a broad range of problems of control, pattern classification, reasoning, planning, and computer vision. This book bridges the gap that has developed between theory and practice. The authors explain what fuzzy sets are, why they work, when they should be used (and when they shouldn't), and how to design systems using them. The authors take an unusual top-down approach to the design of detailed algorithms. They begin with illustrative examples, explain the fundamental theory and design methodologies, and then present more advanced case studies dealing with practical tasks. While they use mathematics to introduce concepts, they ground them in examples of real-world problems that can be solved through fuzzy set technology. The only mathematics prerequisites are a basic knowledge of introductory calculus and linear algebra.
Combines the study of neural networks and fuzzy systems with symbolic artificial intelligence (AI) methods to build comprehensive AI systems. Describes major AI problems (pattern recognition, speech recognition, prediction, decision-making, game-playing) and provides illustrative examples. Includes applications in engineering, business and finance.
Provides an up-to-date integration of expert systems with fuzzy logic and neural networks. Includes coverage of simulation models not present in other books. Presents cases and examples taken from the authors' experience in research and applying the technology to real-world situations.
Fuzzy logic refers to a large subject dealing with a set of methods to characterize and quantify uncertainty in engineering systems that arise from ambiguity, imprecision, fuzziness, and lack of knowledge. Fuzzy logic is a reasoning system based on a foundation of fuzzy set theory, itself an extension of classical set theory, where set membership can be partial as opposed to all or none, as in the binary features of classical logic. Fuzzy logic is a relatively new discipline in which major advances have been made over the last decade or so with regard to theory and applications. Following on from the successful first edition, this fully updated new edition is therefore very timely and much anticipated. Concentration on the topics of fuzzy logic combined with an abundance of worked examples, chapter problems and commercial case studies is designed to help motivate a mainstream engineering audience, and the book is further strengthened by the inclusion of an online solutions manual as well as dedicated software codes. Senior undergraduate and postgraduate students in most engineering disciplines, academics and practicing engineers, plus some working in economics, control theory, operational research etc, will all find this a valuable addition to their bookshelves.
Neural networks and fuzzy systems represent two distinct technologies that deal with uncertainty. This definitive book presents the fundamentals of both technologies, and demonstrates how to combine the unique capabilities of these two technologies for the greatest advantage. Steering clear of unnecessary mathematics, the book highlights a wide range of dynamic possibilities and offers numerous examples to illuminate key concepts. It also explores the value of relating genetic algorithms and expert systems to fuzzy and neural technologies.
Fuzzy logic is a way of thinking that is responsive to human zeal to unveil uncertainty and deal with social paradoxes emerging from it. In this book a number of articles illustrate various social applications to fuzzy logic. The engineering part of the book contains a number of papers, devoted to the description of fuzzy engineering design methodologies. In order to share the experience gained we select papers describing not the application result only but the way how this result has been obtained, that is explaining the design procedures. The potential readership of this book includes researchers and students, workers and engineers in both areas of social and engineering studies. It can be used as a handbook and textbook also. The book includes some examples of real fuzzy engineering.
This book presents in a systematic and comprehensive manner the modeling of uncertainty, vagueness, or imprecision, alias "fuzziness," in just about any field of science and engineering. It delivers a usable methodology for modeling in the absence of real-time feedback. The book includes a short introduction to fuzzy logic containing basic definitions of fuzzy set theory and fuzzy rule systems. It describes methods for the assessment of rule systems, systems with discrete response sets, for modeling time series, for exact physical systems, examines verification and redundancy issues, and investigates rule response functions. Definitions and propositions, some of which have not been published elsewhere, are provided; numerous examples as well as references to more elaborate case studies are also given. Fuzzy rule-based modeling has the potential to revolutionize fields such as hydrology because it can handle uncertainty in modeling problems too complex to be approached by a stochastic analysis. There is also excellent potential for handling large-scale systems such as regionalization or highly non-linear problems such as unsaturated groundwater pollution.