Download Free Fuzzy Systems Design Book in PDF and EPUB Free Download. You can read online Fuzzy Systems Design and write the review.

This book presents a variety of recently developed methods for generating fuzzy rules from data with the help of neural networks and evolutionary algorithms. Special efforts have been put on dealing with knowledge incorporation into neural and evolutionary systems and knowledge extraction from data with the help of fuzzy logic. On the one hand, knowledge that is understandable to human beings can be extracted from data using evolutionary and learning methods by maintaining the interpretability of the generated fuzzy rules. On the other hand, a priori knowledge like expert knowledge and human preferences can be incorporated into evolution and learning, taking advantage of the knowledge representation capability of fuzzy rule systems and fuzzy preference models. Several engineering application examples in the fields of intelligent vehicle systems, process modeling and control and robotics are presented.
Fuzzy logic is a way of thinking that is responsive to human zeal to unveil uncertainty and deal with social paradoxes emerging from it. In this book a number of articles illustrate various social applications to fuzzy logic. The engineering part of the book contains a number of papers, devoted to the description of fuzzy engineering design methodologies. In order to share the experience gained we select papers describing not the application result only but the way how this result has been obtained, that is explaining the design procedures. The potential readership of this book includes researchers and students, workers and engineers in both areas of social and engineering studies. It can be used as a handbook and textbook also. The book includes some examples of real fuzzy engineering.
A comprehensive treatment of model-based fuzzy control systems This volume offers full coverage of the systematic framework for the stability and design of nonlinear fuzzy control systems. Building on the Takagi-Sugeno fuzzy model, authors Tanaka and Wang address a number of important issues in fuzzy control systems, including stability analysis, systematic design procedures, incorporation of performance specifications, numerical implementations, and practical applications. Issues that have not been fully treated in existing texts, such as stability analysis, systematic design, and performance analysis, are crucial to the validity and applicability of fuzzy control methodology. Fuzzy Control Systems Design and Analysis addresses these issues in the framework of parallel distributed compensation, a controller structure devised in accordance with the fuzzy model. This balanced treatment features an overview of fuzzy control, modeling, and stability analysis, as well as a section on the use of linear matrix inequalities (LMI) as an approach to fuzzy design and control. It also covers advanced topics in model-based fuzzy control systems, including modeling and control of chaotic systems. Later sections offer practical examples in the form of detailed theoretical and experimental studies of fuzzy control in robotic systems and a discussion of future directions in the field. Fuzzy Control Systems Design and Analysis offers an advanced treatment of fuzzy control that makes a useful reference for researchers and a reliable text for advanced graduate students in the field.
This exceptional guide and reference is devised for practitioners who want to employ fuzzy logic concepts in the design and deployment of actual fuzzy systems. FUZZY SYSTEMS DESIGN PRINCIPLES concentrates on the IF-THEN fuzzy algorithm, one of the most popular algorithms implemented today. The "basic fuzzy inference algorithm," the IF-THEN structure is not only applicable to many types of problems, but is also comprised of building blocks used in the development of other types of fuzzy systems used in today's electronic and software products. Sponsored by: IEEE Neural Networks Council.
Fuzzy control methods are critical for meeting the demands of complex nonlinear systems. They bestow robust, adaptive, and self-correcting character to complex systems that demand high stability and functionality beyond the capabilities of traditional methods. A thorough treatise on the theory of fuzzy logic control is out of place on the design bench. That is why Fuzzy Controller Design: Theory and Applications offers laboratory- and industry-tested algorithms, techniques, and formulations of real-world problems for immediate implementation. With surgical precision, the authors carefully select the fundamental elements of fuzzy logic control theory necessary to formulate effective and efficient designs. The book supplies a springboard of knowledge, punctuated with examples worked out in MATLAB®/SIMULINK®, from which newcomers to the field can dive directly into applications. It systematically covers the design of hybrid, adaptive, and self-learning fuzzy control structures along with strategies for fuzzy controller design suitable for on-line and off-line operation. Examples occupy an entire chapter, with a section devoted to the simulation of an electro-hydraulic servo system. The final chapter explores industrial applications with emphasis on techniques for fuzzy controller implementation and different implementation platforms for various applications. With proven methods based on more than a decade of experience, Fuzzy Controller Design: Theory and Applications is a concise guide to the methodology, design steps, and formulations for effective control solutions.
This book describes recent advances in the use of fuzzy logic for the design of hybrid intelligent systems based on nature-inspired optimization and their applications in areas such as intelligent control and robotics, pattern recognition, medical diagnosis, time series prediction and optimization of complex problems. Based on papers presented at the North American Fuzzy Information Processing Society Annual Conference (NAFIPS 2017), held in Cancun, Mexico from 16 to 18 October 2017, the book is divided into nine main parts, the first of which first addresses theoretical aspects, and proposes new concepts and algorithms based on type-1 fuzzy systems. The second part consists of papers on new concepts and algorithms for type-2 fuzzy systems, and on applications of type-2 fuzzy systems in diverse areas, such as time series prediction and pattern recognition. In turn, the third part contains papers that present enhancements to meta-heuristics based on fuzzy logic techniques describing new nature-inspired optimization algorithms that use fuzzy dynamic adaptation of parameters. The fourth part presents emergent intelligent models, which range from quantum algorithms to cellular automata. The fifth part explores applications of fuzzy logic in diverse areas of medicine, such as the diagnosis of hypertension and heart diseases. The sixth part describes new computational intelligence algorithms and their applications in different areas of intelligent control, while the seventh examines the use of fuzzy logic in different mathematic models. The eight part deals with a diverse range of applications of fuzzy logic, ranging from environmental to autonomous navigation, while the ninth covers theoretical concepts of fuzzy models
A self-contained treatment of fuzzy systems engineering, offering conceptual fundamentals, design methodologies, development guidelines, and carefully selected illustrative material Forty years have passed since the birth of fuzzy sets, in which time a wealth of theoretical developments, conceptual pursuits, algorithmic environments, and other applications have emerged. Now, this reader-friendly book presents an up-to-date approach to fuzzy systems engineering, covering concepts, design methodologies, and algorithms coupled with interpretation, analysis, and underlying engineering knowledge. The result is a holistic view of fuzzy sets as a fundamental component of computational intelligence and human-centric systems. Throughout the book, the authors emphasize the direct applicability and limitations of the concepts being discussed, and historical and bibliographical notes are included in each chapter to help readers view the developments of fuzzy sets from a broader perspective. A radical departure from current books on the subject, Fuzzy Systems Engineering presents fuzzy sets as an enabling technology whose impact, contributions, and methodology stretch far beyond any specific discipline, making it applicable to researchers and practitioners in engineering, computer science, business, medicine, bioinformatics, and computational biology. Additionally, three appendices and classroom-ready electronic resources make it an ideal textbook for advanced undergraduate- and graduate-level courses in engineering and science.
This volume develops a variety of adaptive fuzzy systems and applies them to a variety of engineering problems. It summarizes the state-of-the-art methods for automatic tuning of the parameters and structures of fuzzy logic systems.
Fuzzy rule systems have found a wide range of applications in many fields of science and technology. Traditionally, fuzzy rules are generated from human expert knowledge or human heuristics for relatively simple systems. In the last few years, data-driven fuzzy rule generation has been very active. Compared to heuristic fuzzy rules, fuzzy rules generated from data are able to extract more profound knowledge for more complex systems. This book presents a number of approaches to the generation of fuzzy rules from data, ranging from the direct fuzzy inference based to neural net works and evolutionary algorithms based fuzzy rule generation. Besides the approximation accuracy, special attention has been paid to the interpretabil ity of the extracted fuzzy rules. In other words, the fuzzy rules generated from data are supposed to be as comprehensible to human beings as those generated from human heuristics. To this end, many aspects of interpretabil ity of fuzzy systems have been discussed, which must be taken into account in the data-driven fuzzy rule generation. In this way, fuzzy rules generated from data are intelligible to human users and therefore, knowledge about unknown systems can be extracted.
Fuzzy sets were first proposed by Lotfi Zadeh in his seminal paper [366] in 1965, and ever since have been a center of many discussions, fervently admired and condemned. Both proponents and opponents consider the argu ments pointless because none of them would step back from their territory. And stiH, discussions burst out from a single sparkle like a conference pa per or a message on some fuzzy-mail newsgroup. Here is an excerpt from an e-mail messagepostedin1993tofuzzy-mail@vexpert. dbai. twvien. ac. at. by somebody who signed "Dave". , . . . Why then the "logic" in "fuzzy logic"? I don't think anyone has successfully used fuzzy sets for logical inference, nor do I think anyone wiH. In my admittedly neophyte opinion, "fuzzy logic" is a misnomer, an oxymoron. (1 would be delighted to be proven wrong on that. ) . . . I carne to the fuzzy literature with an open mind (and open wal let), high hopes and keen interest. I am very much disiHusioned with "fuzzy" per se, but I did happen across some extremely interesting things along the way. " Dave, thanks for the nice quote! Enthusiastic on the surface, are not many of us suspicious deep down? In some books and journals the word fuzzy is religiously avoided: fuzzy set theory is viewed as a second-hand cheap trick whose aim is nothing else but to devalue good classical theories and open up the way to lazy ignorants and newcomers.