Download Free Fuzzy Sets And Their Extensions Representation Aggregation And Models Book in PDF and EPUB Free Download. You can read online Fuzzy Sets And Their Extensions Representation Aggregation And Models and write the review.

This carefully edited book presents an up-to-date state of current research in the use of fuzzy sets and their extensions. It pays particular attention to foundation issues and to their application to four important areas where fuzzy sets are seen to be an important tool for modeling and solving problems. The book’s 34 chapters deal with the subject with clarity and effectiveness. They include four review papers introducing some non-standard representations
The primary aim of the book is to provide a systematic development of the theory of metric spaces of normal, upper semicontinuous fuzzy convex fuzzy sets with compact support sets, mainly on the base space ?n. An additional aim is to sketch selected applications in which these metric space results and methods are essential for a thorough mathematical analysis.This book is distinctly mathematical in its orientation and style, in contrast with many of the other books now available on fuzzy sets, which, although all making use of mathematical formalism to some extent, are essentially motivated by and oriented towards more immediate applications and related practical issues. The reader is assumed to have some previous undergraduate level acquaintance with metric spaces and elementary functional analysis.
"Intuitionistic Fuzzy Information Aggregation: Theory and Applications" is the first book to provide a thorough and systematic introduction to intuitionistic fuzzy aggregation methods, the correlation, distance and similarity measures of intuitionistic fuzzy sets and various decision-making models and approaches based on the above-mentioned information processing tools. Through numerous practical examples and illustrations with tables and figures, it offers researchers and professionals in the fields of fuzzy mathematics, information fusion and decision analysis the most recent research findings, developed by the authors. Zeshui Xu is a Professor at the PLA University of Science and Technology, China. Xiaoqiang Cai is a Professor at the Chinese University of Hong Kong, China.
This carefully edited book presents an up-to-date state of current research in the use of fuzzy sets and their extensions. It pays particular attention to foundation issues and to their application to four important areas where fuzzy sets are seen to be an important tool for modeling and solving problems. The book’s 34 chapters deal with the subject with clarity and effectiveness. They include four review papers introducing some non-standard representations
Optimization is an extremely important area in science and technology which provides powerful and useful tools and techniques for the formulation and solution of a multitude of problems in which we wish, or need, to to find a best possible option or solution. The volume is divided into a coupe of parts which present various aspects of fuzzy optimization, some related more general issues, and applications.
Data processing has become essential to modern civilization. The original data for this processing comes from measurements or from experts, and both sources are subject to uncertainty. Traditionally, probabilistic methods have been used to process uncertainty. However, in many practical situations, we do not know the corresponding probabilities: in measurements, we often only know the upper bound on the measurement errors; this is known as interval uncertainty. In turn, expert estimates often include imprecise (fuzzy) words from natural language such as "small"; this is known as fuzzy uncertainty. In this book, leading specialists on interval, fuzzy, probabilistic uncertainty and their combination describe state-of-the-art developments in their research areas. Accordingly, the book offers a valuable guide for researchers and practitioners interested in data processing under uncertainty, and an introduction to the latest trends and techniques in this area, suitable for graduate students.
This book presents the state-of-the-art in theory and practice regarding similarity and distance measures for intuitionistic fuzzy sets. Quantifying similarity and distances is crucial for many applications, e.g. data mining, machine learning, decision making, and control. The work provides readers with a comprehensive set of theoretical concepts and practical tools for both defining and determining similarity between intuitionistic fuzzy sets. It describes an automatic algorithm for deriving intuitionistic fuzzy sets from data, which can aid in the analysis of information in large databases. The book also discusses other important applications, e.g. the use of similarity measures to evaluate the extent of agreement between experts in the context of decision making.
This book offers a comprehensive and systematic review of the latest research findings in the area of intuitionistic fuzzy calculus. After introducing the intuitionistic fuzzy numbers’ operational laws and their geometrical and algebraic properties, the book defines the concept of intuitionistic fuzzy functions and presents the research on the derivative, differential, indefinite integral and definite integral of intuitionistic fuzzy functions. It also discusses some of the methods that have been successfully used to deal with continuous intuitionistic fuzzy information or data, which are different from the previous aggregation operators focusing on discrete information or data. Mainly intended for engineers and researchers in the fields of fuzzy mathematics, operations research, information science and management science, this book is also a valuable textbook for postgraduate and advanced undergraduate students alike.
This book aims to be a comprehensive and accurate survey of state-of-art research on intuitionistic fuzzy sets theory and could be considered a continuation and extension of the author ́s previous book on Intuitionistic Fuzzy Sets, published by Springer in 1999 (Atanassov, Krassimir T., Intuitionistic Fuzzy Sets, Studies in Fuzziness and soft computing, ISBN 978-3-7908-1228-2, 1999). Since the aforementioned book has appeared, the research activity of the author within the area of intuitionistic fuzzy sets has been expanding into many directions. The results of the author ́s most recent work covering the past 12 years as well as the newest general ideas and open problems in this field have been therefore collected in this new book.
This book provides readers with a timely and comprehensive yet concise view on the field of fuzzy logic and its real-world applications. The chapters, written by authoritative scholars in the field, report on promising new models for data analysis, decision making, and systems modeling, with a special emphasis on their applications in management science. The book is a token of appreciation from the fuzzy research community to Professor Christer Carlsson for his long time research and organizational commitment, which have among other things resulted in the foundation and success of the Institute for Advanced Management Systems Research (IAMSR) at Åbo Akademi University, in Åbo (Turku), Finland. The book serves as timely guide for the fuzzy logic and operations research communities alike.