Download Free Fuzzy Multi Criteria Decision Making Using Neutrosophic Sets Book in PDF and EPUB Free Download. You can read online Fuzzy Multi Criteria Decision Making Using Neutrosophic Sets and write the review.

This book offers a comprehensive guide to the use of neutrosophic sets in multiple criteria decision making problems. It shows how neutrosophic sets, which have been developed as an extension of fuzzy and paraconsistent logic, can help in dealing with certain types of uncertainty that classical methods could not cope with. The chapters, written by well-known researchers, report on cutting-edge methodologies they have been developing and testing on a variety of engineering problems. The book is unique in its kind as it reports for the first time and in a comprehensive manner on the joint use of neutrosophic sets together with existing decision making methods to solve multi-criteria decision-making problems, as well as other engineering problems that are complex, hard to model and/or include incomplete and vague data. By providing new ideas, suggestions and directions for the solution of complex problems in engineering and decision making, it represents an excellent guide for researchers, lecturers and postgraduate students pursuing research on neutrosophic decision making, and more in general in the area of industrial and management engineering.
The aim of this paper is to introduce some new operators for aggregating single-valued neutrosophic (SVN) information and to apply them to solve the multi-criteria decision-making (MCDM) problems.
In this study, we give some concepts concerning the neutrosophic sets, single valued neutrosophic sets, interval-valued neutrosophic sets, bipolar neutrosophic sets, neutrosophic hesitant fuzzy sets, inter-valued neutrosophic hesitant fuzzy sets, refined neutrosophic sets, bipolar neutrosophic refined sets, multi-valued neutrosophic sets, simplified neutrosophic linguistic sets, neutrosophic over/off/under sets, rough neutrosophic sets, rough bipolar neutrosophic sets, rough neutrosophic hyper-complex set, and their basic operations.
In this paper, a definition of quadripartitioned single valued bipolar neutrosophic set (QSVBNS) is introduced as a generalization of both quadripartitioned single valued neutrosophic sets (QSVNS) and bipolar neutrosophic sets (BNS). There is an inherent symmetry in the definition of QSVBNS. Some operations on them are defined and a set theoretic study is accomplished. Various similarity measures and distance measures are defined on QSVBNS. An algorithm relating to multi-criteria decision making problem is presented based on quadripartitioned bipolar weighted similarity measure. Finally, an example is shown to verify the flexibility of the given method and the advantage of considering QSVBNS in place of fuzzy sets and bipolar fuzzy sets.
This work examines all the fuzzy multicriteria methods recently developed, such as fuzzy AHP, fuzzy TOPSIS, interactive fuzzy multiobjective stochastic linear programming, fuzzy multiobjective dynamic programming, grey fuzzy multiobjective optimization, fuzzy multiobjective geometric programming, and more. Each of the 22 chapters includes practical applications along with new developments/results. This book may be used as a textbook in graduate operations research, industrial engineering, and economics courses. It will also be an excellent resource, providing new suggestions and directions for further research, for computer programmers, mathematicians, and scientists in a variety of disciplines where multicriteria decision making is needed.
In this paper one generalizes the intuitionistic fuzzy set (IFS), paraconsistent set, and intuitionistic set to the neutrosophic set (NS). Many examples are presented. Distinctions between NS and IFS are underlined.
This book introduces readers to the novel concept of spherical fuzzy sets, showing how these sets can be applied in practice to solve various decision-making problems. It also demonstrates that these sets provide a larger preference volume in 3D space for decision-makers. Written by authoritative researchers, the various chapters cover a large amount of theoretical and practical information, allowing readers to gain an extensive understanding of both the fundamentals and applications of spherical fuzzy sets in intelligent decision-making and mathematical programming.
In this paper, a new method based on PROMETHEE and TODIM is proposed to solve the MADM problem under the single-valued neutrosophic environment. Based on the calculation formula of inflow and outflow in PROMETHEE method, and the calculation formula of overall dominance in the TODIM method, a new integrated formula is obtained.
As a variation of fuzzy sets and intuitionistic fuzzy sets, neutrosophic sets have been developed to represent uncertain, imprecise, incomplete and inconsistent information that exists in the real world. Simplified neutrosophic sets (SNSs) have been proposed for the main purpose of addressing issues with a set of specific numbers. However, there are certain problems regarding the existing operations of SNSs, as well as their aggregation operators and the comparison methods. Therefore, this paper defines the novel operations of simplified neutrosophic numbers (SNNs) and develops a comparison method based on the related research of intuitionistic fuzzy numbers. On the basis of these operations and the comparison method, some SNN aggregation operators are proposed. Additionally, an approach for multi-criteria group decision-making (MCGDM) problems is explored by applying these aggregation operators. Finally, an example to illustrate the applicability of the proposed method is provided and a comparison with some other methods is made.