Download Free Fuzzy Logic In Data Modeling Book in PDF and EPUB Free Download. You can read online Fuzzy Logic In Data Modeling and write the review.

also in: THE KLUWER INTERNATIONAL SERIES ON ASIAN STUDIES IN COMPUTER AND INFORMATION SCIENCE, Volume 2
Technology has dramatically changed the way in which knowledge is shared within and outside of traditional classroom settings. The application of fuzzy logic to new forms of technology-centered education has presented new opportunities for analyzing and modeling learner behavior. Fuzzy Logic-Based Modeling in Collaborative and Blended Learning explores the application of the fuzzy set theory to educational settings in order to analyze the learning process, gauge student feedback, and enable quality learning outcomes. Focusing on educational data analysis and modeling in collaborative and blended learning environments, this publication is an essential reference source for educators, researchers, educational administrators and designers, and IT specialists. This premier reference monograph presents key research on educational data analysis and modeling through the integration of research on advanced modeling techniques, educational technologies, fuzzy concept maps, hybrid modeling, neuro-fuzzy learning management systems, and quality of interaction.
The volume "Fuzziness in Database Management Systems" is a highly informative, well-organized and up-to-date collection of contributions authored by many of the leading experts in its field. Among the contributors are the editors, Professors Patrick Bose and Janusz Kacprzyk, both of whom are known internationally. The book is like a movie with an all-star cast. The issue of fuzziness in database management systems has a long history. It begins in 1968 and 1971, when I spent my sabbatical leaves at the IBM Research Laboratory in San Jose, California, as a visiting scholar. During these periods I was associated with Dr. E.F. Codd, the father of relational models of database systems, and came in contact with the developers ofiBMs System Rand SQL. These associations and contacts at a time when the methodology of relational models of data was in its formative stages, made me aware of the basic importance of such models and the desirability of extending them to fuzzy database systems and fuzzy query languages. This perception was reflected in my 1973 ffiM report which led to the paper on the concept of a linguistic variable and later to the paper on the meaning representation language PRUF (Possibilistic Relational Universal Fuzzy). More directly related to database issues during that period were the theses of my students V. Tahani, J. Yang, A. Bolour, M. Shen and R. Sheng, and many subsequent reports by both graduate and undergraduate students at Berkeley.
The world we live in is pervaded with uncertainty and imprecision. Is it likely to rain this afternoon? Should I take an umbrella with me? Will I be able to find parking near the campus? Should I go by bus? Such simple questions are a c- mon occurrence in our daily lives. Less simple examples: What is the probability that the price of oil will rise sharply in the near future? Should I buy Chevron stock? What are the chances that a bailout of GM, Ford and Chrysler will not s- ceed? What will be the consequences? Note that the examples in question involve both uncertainty and imprecision. In the real world, this is the norm rather than exception. There is a deep-seated tradition in science of employing probability theory, and only probability theory, to deal with uncertainty and imprecision. The mon- oly of probability theory came to an end when fuzzy logic made its debut. H- ever, this is by no means a widely accepted view. The belief persists, especially within the probability community, that probability theory is all that is needed to deal with uncertainty. To quote a prominent Bayesian, Professor Dennis Lindley, “The only satisfactory description of uncertainty is probability.
"This book includes an introduction to fuzzy logic, fuzzy databases and an overview of the state of the art in fuzzy modeling in databases"--Provided by publisher.
"This book presents up-to-date techniques for addressing data management problems with logic and memory use"--Provided by publisher.
Modern industrial processes and systems require adaptable advanced control protocols able to deal with circumstances demanding "judgement” rather than simple "yes/no”, "on/off” responses: circumstances where a linguistic description is often more relevant than a cut-and-dried numerical one. The ability of fuzzy systems to handle numeric and linguistic information within a single framework renders them efficacious for this purpose. Fuzzy Logic, Identification and Predictive Control first shows you how to construct static and dynamic fuzzy models using the numerical data from a variety of real industrial systems and simulations. The second part exploits such models to design control systems employing techniques like data mining. This monograph presents a combination of fuzzy control theory and industrial serviceability that will make a telling contribution to your research whether in the academic or industrial sphere and also serves as a fine roundup of the fuzzy control area for the graduate student.
Rule-based fuzzy modeling has been recognised as a powerful technique for the modeling of partly-known nonlinear systems. Fuzzy models can effectively integrate information from different sources, such as physical laws, empirical models, measurements and heuristics. Application areas of fuzzy models include prediction, decision support, system analysis, control design, etc. Fuzzy Modeling for Control addresses fuzzy modeling from the systems and control engineering points of view. It focuses on the selection of appropriate model structures, on the acquisition of dynamic fuzzy models from process measurements (fuzzy identification), and on the design of nonlinear controllers based on fuzzy models. To automatically generate fuzzy models from measurements, a comprehensive methodology is developed which employs fuzzy clustering techniques to partition the available data into subsets characterized by locally linear behaviour. The relationships between the presented identification method and linear regression are exploited, allowing for the combination of fuzzy logic techniques with standard system identification tools. Attention is paid to the trade-off between the accuracy and transparency of the obtained fuzzy models. Control design based on a fuzzy model of a nonlinear dynamic process is addressed, using the concepts of model-based predictive control and internal model control with an inverted fuzzy model. To this end, methods to exactly invert specific types of fuzzy models are presented. In the context of predictive control, branch-and-bound optimization is applied. The main features of the presented techniques are illustrated by means of simple examples. In addition, three real-world applications are described. Finally, software tools for building fuzzy models from measurements are available from the author.
"This book provides comprehensive coverage and definitions of the most important issues, concepts, trends, and technologies in fuzzy topics applied to databases, discussing current investigation into uncertainty and imprecision management by means of fuzzy sets and fuzzy logic in the field of databases and data mining. It offers a guide to fuzzy information processing in databases"--Provided by publisher.
Foundations and ideas -- Principal model types -- Approaches to model building -- Fundamental concepts of fuzzy logic -- Fundamental concepts of fuzzy systems -- Fuzzy SQL and intelligent queries -- Fuzzy clustering -- Fuzzy rule induction -- Fundamental concepts of genetic algorithms -- Genetic resource scheduling optimization -- Genetic tuning of fuzzy models.