Download Free Fuzzy Logic For Data Science Book in PDF and EPUB Free Download. You can read online Fuzzy Logic For Data Science and write the review.

The modern origin of fuzzy sets, fuzzy algebra, fuzzy decision making, and “computing with words” is conventionally traced to Lotfi Zadeh’s publication in 1965 of his path-breaking refutation of binary set theory. In a sixteen-page article, modestly titled “Fuzzy Sets” and published in the journal Information and Control, Zadeh launched a multi-disciplinary revolution. The start was relatively slow, but momentum gathered quickly. From 1970 to 1979 there were about 500 journal publications with the word fuzzy in the title; from 2000 to 2009 there were more than 35,000. At present, citations to Zadeh’s publications are running at a rate of about 1,500-2,000 per year, and this rate continues to rise. Almost all applications of Zadeh’s ideas have been in highly technical scientific fields, not in the social sciences. Zadeh was surprised by this development. In a personal note he states: “When I wrote my l965 paper, I expected that fuzzy set theory would be applied primarily in the realm of human sciences. Contrary to my expectation, fuzzy set theory and fuzzy logic are applied in the main in physical and engineering sciences.” In fact, the first comprehensive examination of fuzzy sets by a social scientist did not appear until 1987, a full twenty-two years after the publication of Zadeh’s seminal article, when Michael Smithson, an Australian psychologist, published Fuzzy Set Analysis for Behavioral and Social Sciences.
This volume contains the proceedings of the Eighth Austrian Artificial Intelligence Conference, held in Linz, Austria, in June 1993. The focus of the conference was on "Fuzzy Logic in Artificial Intelligence". The volume contains abstracts of two invited talks and full versions of 17 carefully selected papers. The invited talks were: "The role of fuzzylogic and soft computing in the conception and design of intelligent systems" by Lotfi A. Zadeh, and "A contextual approach for AI systems development" by Irina V. Ezhkova. The contributed papers are grouped into sections on theoretical issues, machine learning, expert systems, robotics and control, applications to medicine, and applications to car driving. Additionally, the volume contains descriptions of the four workshops that took place during the conference.
"This book presents up-to-date techniques for addressing data management problems with logic and memory use"--Provided by publisher.
This textbook provides readers with the tools, techniques and cases required to excel with modern artificial intelligence methods. These embrace the family of neural networks, fuzzy systems and evolutionary computing in addition to other fields within machine learning, and will help in identifying, visualizing, classifying and analyzing data to support business decisions./p> The authors, discuss advantages and drawbacks of different approaches, and present a sound foundation for the reader to design and implement data analytic solutions for real‐world applications in an intelligent manner. Intelligent Techniques for Data Science also provides real-world cases of extracting value from data in various domains such as retail, health, aviation, telecommunication and tourism.
FUZZY COMPUTING IN DATA SCIENCE This book comprehensively explains how to use various fuzzy-based models to solve real-time industrial challenges. The book provides information about fundamental aspects of the field and explores the myriad applications of fuzzy logic techniques and methods. It presents basic conceptual considerations and case studies of applications of fuzzy computation. It covers the fundamental concepts and techniques for system modeling, information processing, intelligent system design, decision analysis, statistical analysis, pattern recognition, automated learning, system control, and identification. The book also discusses the combination of fuzzy computation techniques with other computational intelligence approaches such as neural and evolutionary computation. Audience Researchers and students in computer science, artificial intelligence, machine learning, big data analytics, and information and communication technology.
Machine learning is widely used for data analysis. Dynamic fuzzy data are one of the most difficult types of data to analyse in the field of big data, cloud computing, the Internet of Things, and quantum information. At present, the processing of this kind of data is not very mature. The authors carried out more than 20 years of research, and show in this book their most important results. The seven chapters of the book are devoted to key topics such as dynamic fuzzy machine learning models, dynamic fuzzy self-learning subspace algorithms, fuzzy decision tree learning, dynamic concepts based on dynamic fuzzy sets, semi-supervised multi-task learning based on dynamic fuzzy data, dynamic fuzzy hierarchy learning, examination of multi-agent learning model based on dynamic fuzzy logic. This book can be used as a reference book for senior college students and graduate students as well as college teachers and scientific and technical personnel involved in computer science, artificial intelligence, machine learning, automation, data analysis, mathematics, management, cognitive science, and finance. It can be also used as the basis for teaching the principles of dynamic fuzzy learning.
This book includes the proceedings of the Intelligent and Fuzzy Techniques INFUS 2019 Conference, held in Istanbul, Turkey, on July 23–25, 2019. Big data analytics refers to the strategy of analyzing large volumes of data, or big data, gathered from a wide variety of sources, including social networks, videos, digital images, sensors, and sales transaction records. Big data analytics allows data scientists and various other users to evaluate large volumes of transaction data and other data sources that traditional business systems would be unable to tackle. Data-driven and knowledge-driven approaches and techniques have been widely used in intelligent decision-making, and they are increasingly attracting attention due to their importance and effectiveness in addressing uncertainty and incompleteness. INFUS 2019 focused on intelligent and fuzzy systems with applications in big data analytics and decision-making, providing an international forum that brought together those actively involved in areas of interest to data science and knowledge engineering. These proceeding feature about 150 peer-reviewed papers from countries such as China, Iran, Turkey, Malaysia, India, USA, Spain, France, Poland, Mexico, Bulgaria, Algeria, Pakistan, Australia, Lebanon, and Czech Republic.
Fuzzy data such as marks, scores, verbal evaluations, imprecise observations, experts' opinions and grey tone pictures, are quite common. In Fuzzy Data Analysis the authors collect their recent results providing the reader with ideas, approaches and methods for processing such data when looking for sub-structures in knowledge bases for an evaluation of functional relationship, e.g. in order to specify diagnostic or control systems. The modelling presented uses ideas from fuzzy set theory and the suggested methods solve problems usually tackled by data analysis if the data are real numbers. Fuzzy Data Analysis is self-contained and is addressed to mathematicians oriented towards applications and to practitioners in any field of application who have some background in mathematics and statistics.
What is fuzzy logic?--a system of concepts and methods for exploring modes of reasoning that are approximate rather than exact. While the engineering community has appreciated the advances in understanding using fuzzy logic for quite some time, fuzzy logic's impact in non-engineering disciplines is only now being recognized. The authors of Fuzzy Logic in Geology attend to this growing interest in the subject and introduce the use of fuzzy set theory in a style geoscientists can understand. This is followed by individual chapters on topics relevant to earth scientists: sediment modeling, fracture detection, reservoir characterization, clustering in geophysical data analysis, ground water movement, and time series analysis.George Klir is the Distinguished Professor of Systems Science and Director of the Center for Intelligent Systems, Fellow of the IEEE and IFSA, editor of nine volumes, editorial board member of 18 journals, and author or co-author of 16 booksForeword by the inventor of fuzzy logic-- Professor Lotfi Zadeh
The interdisciplinary field of fuzzy logic encompass applications in the electrical, industrial, chemical and engineering realms as well as in areas of management and environmental issues, while data mining covers new approaches to big data, massive data, and scalable, parallel and distributed algorithms. This book presents papers from the 6th International Conference on Fuzzy Systems and Data Mining (FSDM 2020). The conference was originally due to be held from 13-16 November 2020 in Xiamen, China, but was changed to an online conference held on the same dates due to ongoing restrictions connected with the COVID-19 pandemic. The annual FSDM conference provides a platform for knowledge exchange between international experts, researchers academics and delegates from industry. This year, the committee received 316 submissions, of which 76 papers were selected for inclusion in the conference; an acceptance rate of 24%. The conference covers four main areas: fuzzy theory; algorithms and systems, which includes topics like stability; foundations and control; and fuzzy applications, which are widely used and cover various types of processing as well as hardware and architecture for big data and time series. Providing a current overview of research and developments in fuzzy logic and data mining, the book will be of interest to all those working in the field of data science.