Download Free Futuristic Trends In Agriculture Engineering Food Sciences Book in PDF and EPUB Free Download. You can read online Futuristic Trends In Agriculture Engineering Food Sciences and write the review.

Agriculture and Food Science Book series aims to bring together leading academic scientists, researchers and research scholars to publish their experiences and research results on all aspects of Agriculture and Food Science. It also provides a premier interdisciplinary platform for researchers, practitioners and educators to present and discuss the most recent innovations, trends, and concerns as well as practical challenges encountered and solutions adopted in the fields of Agriculture and Food Science. High quality research contributions describing original and unpublished results of conceptual, constructive, empirical, experimental, or theoretical work in all areas of Agriculture and Food Science are cordially invited for publication. Authors are solicited to contribute to the book series by submitting articles that illustrate research results, projects, surveying works and industrial experiences that describe significant advances in the following areas, but are not limited to 1. Textile Engineering 2. Agronomy 3. Soil Science 4. Microbiology 5. Phsiology 6. Ecology 7. Epidemology 8. Genetics & Plant Breeding 9. Plant Pathology 10. Entomology 11. Agricultural Biotechnology 12. Environmental Sciences 13. Agricultural Engineering 14. Food Science 15. Waste Management 16. Animal Husbandry and Dairying 17. Agricultural Statistics 18. Food Storage and Preservation 19. Food Technology and Processing 20. Agricultural Sustainability 21. Irrigation 22. Root Morphology Sensing 23. Yield-Monitoring 24. Industrial Crops and Products Engineering 25. Artificial Intelligence in Agriculture 26. Poultry Science 27. Forestry 28. Horticulture 29. Fisheries Science 30. Agriculture Equipments & Smart Technologies 31. Veternary Sciences 32. Contract & Integrated Farming 33. Sericulture
Future Foods: Global Trends, Opportunities, and Sustainability Challenges highlights trends and sustainability challenges along the entire agri-food supply chain. Using an interdisciplinary approach, this book addresses innovations, technological developments, state-of-the-art based research, value chain analysis, and a summary of future sustainability challenges. The book is written for food scientists, researchers, engineers, producers, and policy makers and will be a welcomed reference. Provides practical solutions for overcoming recurring sustainability challenges along the entire agri-food supply chain Highlights potential industrial opportunities and supports circular economy concepts Proposes novel concepts to address various sustainability challenges that can affect and have an impact on the future generations
For nearly a century, scientific advances have fueled progress in U.S. agriculture to enable American producers to deliver safe and abundant food domestically and provide a trade surplus in bulk and high-value agricultural commodities and foods. Today, the U.S. food and agricultural enterprise faces formidable challenges that will test its long-term sustainability, competitiveness, and resilience. On its current path, future productivity in the U.S. agricultural system is likely to come with trade-offs. The success of agriculture is tied to natural systems, and these systems are showing signs of stress, even more so with the change in climate. More than a third of the food produced is unconsumed, an unacceptable loss of food and nutrients at a time of heightened global food demand. Increased food animal production to meet greater demand will generate more greenhouse gas emissions and excess animal waste. The U.S. food supply is generally secure, but is not immune to the costly and deadly shocks of continuing outbreaks of food-borne illness or to the constant threat of pests and pathogens to crops, livestock, and poultry. U.S. farmers and producers are at the front lines and will need more tools to manage the pressures they face. Science Breakthroughs to Advance Food and Agricultural Research by 2030 identifies innovative, emerging scientific advances for making the U.S. food and agricultural system more efficient, resilient, and sustainable. This report explores the availability of relatively new scientific developments across all disciplines that could accelerate progress toward these goals. It identifies the most promising scientific breakthroughs that could have the greatest positive impact on food and agriculture, and that are possible to achieve in the next decade (by 2030).
Given the central role of the food and agriculture system in driving so many of the connected ecological, social and economic threats and challenges we currently face, Rethinking Food and Agriculture reviews, reassesses and reimagines the current food and agriculture system and the narrow paradigm in which it operates. Rethinking Food and Agriculture explores and uncovers some of the key historical, ethical, economic, social, cultural, political, and structural drivers and root causes of unsustainability, degradation of the agricultural environment, destruction of nature, short-comings in science and knowledge systems, inequality, hunger and food insecurity, and disharmony. It reviews efforts towards 'sustainable development', and reassesses whether these efforts have been implemented with adequate responsibility, acceptable societal and environmental costs and optimal engagement to secure sustainability, equity and justice. The book highlights the many ways that farmers and their communities, civil society groups, social movements, development experts, scientists and others have been raising awareness of these issues, implementing solutions and forging 'new ways forward', for example towards paradigms of agriculture, natural resource management and human nutrition which are more sustainable and just. Rethinking Food and Agriculture proposes ways to move beyond the current limited view of agro-ecological sustainability towards overall sustainability of the food and agriculture system based on the principle of 'inclusive responsibility'. Inclusive responsibility encourages ecosystem sustainability based on agro-ecological and planetary limits to sustainable resource use for production and livelihoods. Inclusive responsibility also places importance on quality of life, pluralism, equity and justice for all and emphasises the health, well-being, sovereignty, dignity and rights of producers, consumers and other stakeholders, as well as of nonhuman animals and the natural world. - Explores some of the key drivers and root causes of unsustainability , degradation of the agricultural environment and destruction of nature - Highlights the many ways that different stakeholders have been forging 'new ways forward' towards alternative paradigms of agriculture, human nutrition and political economy, which are more sustainable and just - Proposes ways to move beyong the current unsustainable exploitation of natural resources towards agroecological sustainability and overall sustainability of the food and agriculture system based on 'inclusive responsibility'
This book features a comprehensive foresight assessment, exploring the pressures — threats as well as opportunities — on the global agriculture & food systems between now and 2050. The overarching aim is to help readers understand the context, by analyzing global trends and anticipating change for better planning and constructing pathways from the present to the future by focusing on the right questions and problems. The book contextualizes the role of international agricultural research in addressing the complex challenges posed by UN 2030 Agenda and beyond, and identifies the decisions that scientific leaders, donors and policy makers need to take today, and in the years ahead, to ensure that a global population rising to nine billion or more combined with rising incomes and changing diets can be fed sustainably and equitably, in the face of the growing climate threats.
Biotechnologies for Wastewater Treatment and Resource Recovery: Current Trends and Future Scope presents up-to-date insights on the water crisis stemming from wastewater production. Edited by experts in the field, the book's chapters are structured around different types of bioremediation approaches (phytoremediation, myco-remediation, bio-stimulation, bio-augmentation, rhizoremediation, etc.) all applied in the context of wastewater treatment. This comprehensive resource equips students, research scholars, and policymakers with a holistic understanding of wastewater treatment and resource recovery through bioremediation techniques. Abundant real-world applications and case studies empower readers to make well-informed decisions, ensuring the efficient utilization of energy and efforts in addressing this critical issue. - Covers a thorough analysis of various bioremediation approaches such as: phytoremediation, myco-remediation, bio-stimulation, bio-augmentation, rhizoremediation, etc. - Offers the most up-to-date information on integrated wastewater treatment using biological and physicochemical methods - Includes case studies on bioremediation of domestic/industrial wastewater for the elimination of heavy metals/emerging water contaminants/pesticides/microplastics, amongst others
This Special Issue presents the latest advances in agriculture, aquaculture, food technology and environmental protection and engineering, discussing, among others, the following issues: new technologies in water, stormwater and wastewater treatment; water saving, lake restoration; new sludge and waste management systems; biodiesel production from animal fat waste; the microbiological quality of compound fish feeds for aquaculture; the role of technological processes to improve food quality and safety; new trends in the analysis of food and food components including in vitro, in vivo, and in silico analyses; and functional and structural aspects of bioactivities of food molecules.
Continued population growth, rapidly changing consumption patterns and the impacts of climate change and environmental degradation are driving limited resources of food, energy, water and materials towards critical thresholds worldwide. These pressures are likely to be substantial across Africa, where countries will have to find innovative ways to boost crop and livestock production to avoid becoming more reliant on imports and food aid. Sustainable agricultural intensification - producing more output from the same area of land while reducing the negative environmental impacts - represents a solution for millions of African farmers. This volume presents the lessons learned from 40 sustainable agricultural intensification programmes in 20 countries across Africa, commissioned as part of the UK Government's Foresight project. Through detailed case studies, the authors of each chapter examine how to develop productive and sustainable agricultural systems and how to scale up these systems to reach many more millions of people in the future. Themes covered include crop improvements, agroforestry and soil conservation, conservation agriculture, integrated pest management, horticulture, livestock and fodder crops, aquaculture, and novel policies and partnerships.
Genetically engineered (GE) crops were first introduced commercially in the 1990s. After two decades of production, some groups and individuals remain critical of the technology based on their concerns about possible adverse effects on human health, the environment, and ethical considerations. At the same time, others are concerned that the technology is not reaching its potential to improve human health and the environment because of stringent regulations and reduced public funding to develop products offering more benefits to society. While the debate about these and other questions related to the genetic engineering techniques of the first 20 years goes on, emerging genetic-engineering technologies are adding new complexities to the conversation. Genetically Engineered Crops builds on previous related Academies reports published between 1987 and 2010 by undertaking a retrospective examination of the purported positive and adverse effects of GE crops and to anticipate what emerging genetic-engineering technologies hold for the future. This report indicates where there are uncertainties about the economic, agronomic, health, safety, or other impacts of GE crops and food, and makes recommendations to fill gaps in safety assessments, increase regulatory clarity, and improve innovations in and access to GE technology.
FAO’s Statistical Pocketbook complements the Statistical Yearbook, by providing, in an easy and simple way, quick access to top-level numbers, charts and maps on many dimensions of food and agriculture – from the characteristics of the sector to production, prices and trade, as well as food security and nutrition and environmental aspects.