Download Free Fusion For Robot Perception And Control Book in PDF and EPUB Free Download. You can read online Fusion For Robot Perception And Control and write the review.

Humans have long dreamed of robots that can perform a wide variety of tasks, such as cooking, cleaning, and exploring potentially dangerous environments. However, robotics adoption still struggles even in highly-structured environments. In factories, robots currently account for less than one third of the manufacturing workforce. Because many robots need to be hardcoded for every task, they often cannot deal with any errors in their models nor any changes to the environment. In academic research, recent works in machine learning are enabling robots to learn directly from data. Particularly in the areas of learning-based perception and control, we see advancements in deep learning for visual perception from raw images as well as deep reinforcement learning (RL) for learning complex skills from trial and error. However, these black-box techniques often require large amounts of data, have difficult-to-interpret results and processes, and fail catastrophically when dealing with out-of-distribution data. In order to create robotic systems that can flexibly operate in dynamic environments, we want robot perception and control algorithms that have three characteristics: sample efficiency, robustness, and generalizability. In this dissertation, I introduce the concept of ''fusion'' in robot perception and control algorithms to achieve these three characteristics. On the perception side, we fuse multiple sensor modalities and demonstrate generalization to new task instances and robustness to sensor failures. On the control side, we leverage fusion by combining known models with learned policies, making our policy learning substantially more sample efficient.
Deep Learning for Robot Perception and Cognition introduces a broad range of topics and methods in deep learning for robot perception and cognition together with end-to-end methodologies. The book provides the conceptual and mathematical background needed for approaching a large number of robot perception and cognition tasks from an end-to-end learning point-of-view. The book is suitable for students, university and industry researchers and practitioners in Robotic Vision, Intelligent Control, Mechatronics, Deep Learning, Robotic Perception and Cognition tasks. Presents deep learning principles and methodologies Explains the principles of applying end-to-end learning in robotics applications Presents how to design and train deep learning models Shows how to apply deep learning in robot vision tasks such as object recognition, image classification, video analysis, and more Uses robotic simulation environments for training deep learning models Applies deep learning methods for different tasks ranging from planning and navigation to biosignal analysis
This book describes visual perception and control methods for robotic systems that need to interact with the environment. Multiple view geometry is utilized to extract low-dimensional geometric information from abundant and high-dimensional image information, making it convenient to develop general solutions for robot perception and control tasks. In this book, multiple view geometry is used for geometric modeling and scaled pose estimation. Then Lyapunov methods are applied to design stabilizing control laws in the presence of model uncertainties and multiple constraints.
This book describes visual perception and control methods for robotic systems that need to interact with the environment. Multiple view geometry is utilized to extract low-dimensional geometric information from abundant and high-dimensional image information, making it convenient to develop general solutions for robot perception and control tasks. In this book, multiple view geometry is used for geometric modeling and scaled pose estimation. Then Lyapunov methods are applied to design stabilizing control laws in the presence of model uncertainties and multiple constraints.
Tactile Sensing, Skill Learning and Robotic Dexterous Manipulation focuses on cross-disciplinary lines of research and groundbreaking research ideas in three research lines: tactile sensing, skill learning and dexterous control. The book introduces recent work about human dexterous skill representation and learning, along with discussions of tactile sensing and its applications on unknown objects’ property recognition and reconstruction. Sections also introduce the adaptive control schema and its learning by imitation and exploration. Other chapters describe the fundamental part of relevant research, paying attention to the connection among different fields and showing the state-of-the-art in related branches. The book summarizes the different approaches and discusses the pros and cons of each. Chapters not only describe the research but also include basic knowledge that can help readers understand the proposed work, making it an excellent resource for researchers and professionals who work in the robotics industry, haptics and in machine learning. Provides a review of tactile perception and the latest advances in the use of robotic dexterous manipulation Presents the most detailed work on synthesizing intelligent tactile perception, skill learning and adaptive control Introduces recent work on human’s dexterous skill representation and learning and the adaptive control schema and its learning by imitation and exploration Reveals and illustrates how robots can improve dexterity by modern tactile sensing, interactive perception, learning and adaptive control approaches
This work presents a series of papers examining various aspects of sensor fusion and decentralized control in robotic systems.
Intelligent robotics has become the focus of extensive research activity. This effort has been motivated by the wide variety of applications that can benefit from the developments. These applications often involve mobile robots, multiple robots working and interacting in the same work area, and operations in hazardous environments like nuclear power plants. Applications in the consumer and service sectors are also attracting interest. These applications have highlighted the importance of performance, safety, reliability, and fault tolerance. This volume is a selection of papers from a NATO Advanced Study Institute held in July 1989 with a focus on active perception and robot vision. The papers deal with such issues as motion understanding, 3-D data analysis, error minimization, object and environment modeling, object detection and recognition, parallel and real-time vision, and data fusion. The paradigm underlying the papers is that robotic systems require repeated and hierarchical application of the perception-planning-action cycle. The primary focus of the papers is the perception part of the cycle. Issues related to complete implementations are also discussed.
To give mobile robots real autonomy, and to permit them to act efficiently in a diverse, cluttered, and changing environment, they must be equipped with powerful tools for perception and reasoning. Artificial Vision for Mobile Robots presents new theoretical and practical tools useful for providing mobile robots with artificial vision in three dimensions, including passive binocular and trinocular stereo vision, local and global 3D map reconstructions, fusion of local 3D maps into a global 3D map, 3D navigation, control of uncertainty, and strategies of perception. Numerous examples from research carried out at INRIA with the Esprit Depth and Motion Analysis project are presented in a clear and concise manner. Nicolas Ayache is Research Director at INRIA, Le Chesnay, France. Contents. General Introduction. Stereo Vision. Introduction. Calibration. Image Representation. Binocular Stereo Vision Constraints. Binocular Stereo Vision Algorithms. Experiments in Binocular Stereo Vision. Trinocular Stereo Vision, Outlook. Multisensory Perception. Introduction. A Unified Formalism. Geometric Representation. Construction of Visual Maps. Combining Visual Maps. Results: Matching and Motion. Results: Matching and Fusion. Outlook.