Download Free Fungal Siderophores Book in PDF and EPUB Free Download. You can read online Fungal Siderophores and write the review.

In the past few decades, it has been realized through research that fungal siderophores epitomize the uptake of iron as well as other essential elements like zinc, magnesium, copper, nickel and arsenic. Understanding the chemical structures of different fungal siderophores and the membrane receptors involved in uptake of mineral ions has opened new areas for research. In this edited volume, recent research is presented on fungal siderophores in one comprehensive volume to provide researchers a strong base for future research. Siderophores are the low molecular weight, high affinity iron-chelating compounds produced by bacteria and fungi. They are responsible for transporting iron across the cell membrane. Fungi produce a range of hydroxamate siderophores involved in the uptake of essential elements in almost all microorganisms and plants. In recent years, siderophores have been used in molecular imaging applications to visualize and understand cellular functions, which thus provide an opportunity to identify new drug targets. Therefore, knowledge of fungal siderophores has become vital in current research. Siderophores have received much attention in recent years because of their potential roles and applications in various research areas. Their significance in these applications is because siderophores have the ability to bind a variety of metals in addition to iron, and they have a wide range of chemical structures and specific properties. For instance, siderophores function as biocontrols, biosensors, and bioremediation and chelation agents, in addition to their important role in weathering soil minerals and enhancing plant growth. This book focuses on siderophores with the following significant points. It discusses leading, state-of-the-art research in all possible areas on fungal siderophores. The contributors are well-known and recognized authorities in the field of fungal siderophores. It discusses a projection of practical applications of fungal siderophores in various domains. This is the first book exclusively on fungal siderophores. In this comprehensive, edited volume, we show leading research on fungal siderophores and provide the most recent knowledge of researchers' work on siderophores. This book presents in-depth knowledge on siderophores to researchers working in areas of health sciences, microbiology, plant sciences, biotechnology, and bioinformatics.
Presents the latest advances in the study of the intracellular fate and transport of metal ions in fungi, emphasizing the mechanisms that regulate cellular concentration. The book explains the expanding relationship between molecular genetics and inorganic biochemistry.
The Oxford Textbook of Medical Mycology is a comprehensive reference text which brings together the science and medicine of human fungal disease. Written by a leading group of international authors to bring a global expertise, it is divided into sections that deal with the principles of mycology, the organisms, a systems based approach to management, fungal disease in specific patient groups, diagnosis, and treatment. The detailed clinical chapters take account of recent international guidelines on the management of fungal disease. With chapters covering recent developments in taxonomy, fungal genetics and other 'omics', epidemiology, pathogenesis, and immunology, this textbook is well suited to aid both scientists and clinicians. The extensive illustrations, tables, and in-depth coverage of topics, including discussion of the non-infective aspects of allergic and toxin mediated fungal disease, are designed to aid the understanding of mechanisms and pathology, and extend the usual approach to fungal disease. This textbook is essential reading for microbiologists, research scientists, infectious diseases clinicians, respiratory physicians, and those managing immunocompromised patients. Part of the Oxford Textbook in Infectious Disease and Microbiology series, it is also a useful companion text for students and trainees looking to supplement mycology courses and microbiology training.
Almost all homes, apartments, and commercial buildings will experience leaks, flooding, or other forms of excessive indoor dampness at some point. Not only is excessive dampness a health problem by itself, it also contributes to several other potentially problematic types of situations. Molds and other microbial agents favor damp indoor environments, and excess moisture may initiate the release of chemical emissions from damaged building materials and furnishings. This new book from the Institute of Medicine examines the health impact of exposures resulting from damp indoor environments and offers recommendations for public health interventions. Damp Indoor Spaces and Health covers a broad range of topics. The book not only examines the relationship between damp or moldy indoor environments and adverse health outcomes but also discusses how and where buildings get wet, how dampness influences microbial growth and chemical emissions, ways to prevent and remediate dampness, and elements of a public health response to the issues. A comprehensive literature review finds sufficient evidence of an association between damp indoor environments and some upper respiratory tract symptoms, coughing, wheezing, and asthma symptoms in sensitized persons. This important book will be of interest to a wide-ranging audience of science, health, engineering, and building professionals, government officials, and members of the public.
These chapters provide up-to-date information on nematophagous fungi, particularly those of the Orbiliaceae in Ascomycota, whose asexual states produce nematode-trapping devices. The authors consider fungal-nematode interactions, fossil fungi, the biodiversity, ecology and geographical distribution of nematode-trapping fungi, and their potential use in biocontrol of nematodes, all in detail. Nematode-trapping fungi with adhesive or mechanical hyphal traps are the main focus of this book which begins with an overview of the data on nematode-trapping fungi, including their taxonomy, phylogeny and evolution. Subsequent chapters expand upon the methods and techniques used to study these fascinating fungi. Keys for genera of Arthrobotrys, Drechslerella and Dactylellina, which include all reported species of predatory orbiliaceous fungi are presented and numerous species from these genera are morphologically described and illustrated. The ecology of nematode-trapping fungi is expertly presented: their occurrence and habitats, their geographical and seasonal distribution and the effects of soil conditions and nematode density on their distribution all feature amongst the relevant themes. Further chapters examine the use of nematode-trapping fungi in biological control and the authors consider nematicidal activities in detail, exploring the many compounds from fungi that feature in nematicidal activities and of course useful paths for further study on this topic. This is a highly informative and carefully presented book, providing scientific insight for scholars with an interest in fungi and in biological control of nematodes.
This first comprehensive treatise on iron transport in bacteria, fungi, plants, and animals summarizes the current state of knowledge on the subject.
This book provides a comprehensive review on the status of iron nutrition in plants. It contains updated reviews of most relevant issues involving Fe in plants and combines research on molecular biology with physiological studies of plant-iron nutrition. It also covers molecular aspects of iron uptake and storage in Arabidopsis and transmembrane movement and translocation of iron in plants. This book should serve to stimulate continued exploration in the field.
Fungi research and knowledge grew rapidly following recent advances in genetics and genomics. This book synthesizes new knowledge with existing information to stimulate new scientific questions and propel fungal scientists on to the next stages of research. This book is a comprehensive guide on fungi, environmental sensing, genetics, genomics, interactions with microbes, plants, insects, and humans, technological applications, and natural product development.
Iron Chelation in Plants and Soil Microorganisms provides an introduction to the basic biological processes of plants that require iron and those affected by iron deficiency. The book aims to stimulate research in the area of iron metabolism in plants and plant-associated microorganisms. The book is organized into three parts. Part I provides an overview of research methods used in the study of iron chelation relevant to plant biology. Key topics covered include microbial siderophores, phytosiderophores, and plant and microbial ferritins. Part II discusses the molecular approach to iron chelation, which includes molecular biology, enzymology, and iron uptake activities. Part III addresses various physiological and chemical characteristics of the iron stress response. This book was written for scientists involved in plant physiology, agronomy, phytopathology, plant control, and soil microbiology. It may also be of interest to those studying soil chemistry, plant-mineral relationships, horticulture, in vivo and in vitro iron measurements, and microbial ecology. In addition, the book can serve as reference for specialty courses and laboratories conducting research on iron nutrition in plants as well as individuals engaged in iron-related research.
provides an up–to–date survey of iron transport systems in bacteria; details iron transport and its regulation in E.colias a prototype for iron transport systems in gram–negative bacteria; includes chapters on the major gram–negative, gram–positive and acid–fast bacterial pathogens – their iron transport systems and the roles of these systems in virulence; presents structural studies of siderophores, heme carriers, and iron transport proteins; discusses the ecology of siderophores and potential therapeutic uses of siderophores.